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1.0 INTRODUCTION

The purpose of this report is to document the functional requirements and detailed
specifications for the Local System Services of the Advanced Information Processing
System (AIPS). This introductory section is provided to outline the overall architecture and
functional requirements of the AIPS system. Section 1.1 gives a brief overview of the
AIPS architecture as well as a detailed description of the AIPS Fault Tolerant Processor
(FTP) architecture, while Section 1.2 provides an introduction to the AIPS system
software. Sections 2 through 6 describe the Local System Services functional requirements
and design and detailed specifications. Each of these sections describes one of the Local
System Services functions. Section 7 concludes with a summary of results and
suggestions for future work in this area.

1.1 AIPS Architecture

The Advanced Information Processing System is designed to provide a fault- and damage-
tolerant data processing architecture which can serve as the core avionics system for a
broad range of aerospace vehicles being researched and developed by NASA. These
vehicles include manned and unmanned space vehicles and platforms, deep space probes,
commercial transports, and tactical military aircraft.

AIPS is a multicomputer architecture composed of hardware and software 'building blocks'
that can be configured to meet a broad range of application requirements. The hardware
building blocks are fault-tolerant, general purpose computers (GPCs), fault- and damage-
tolerant inter-computer (IC) and input/output (I/O) networks, and interfaces between the
networks and the general purpose computers. The software building blocks are the major
software functions: local system services, input/output system services, inter-computer
system services and the system manager. This software provides the services necessary in
a traditional real-time computer such as task scheduling and dispatching, communication
with sensors and actuators, etc. The software also supplies the redundancy management
services necessary in a redundant computer and the services necessary in a distributed
system such as inter-function communication across processing sites, management of
distributed redundancy, management of networks, and migration of functions between
processing sites.

The AIPS hardware consists of a number of computers which may be physically dispersed
throughout a vehicle. These dispersed computers are linked together by a reliable,
damage-tolerant data communication pathway called the IC network, or IC bus. (Since the
hardware implementation is a circuit-switched network which appears to the
communication software and the receiving and transmitting devices as a conventional bus,
the terms 'network' and 'bus' are used interchangeably throughout this document.) A
computer at any particular processing site may also have access to varying numbers and
~ types of I/O buses, which are separate from the IC bus. The I/O buses may be global,
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regional or local in nature. I/O devices on the global I/O bus are available to all, or at least a
majority, of the AIPS computers. Regional buses connect I/O devices in a given region to
the processing sites located in their vicinity. Local buses connect a computer to the I/O
devices dedicated to that computer. Additionally, I/O devices may be connected directly to
the internal bus of a processor and accessed as though the I/O devices reside in the
computer memory (memory mapped I/O). Both the I/O buses and the IC bus are time-
division multiple-access contention buses. Figure 1 shows the laboratory engineering
model for a distributed AIPS configuration. This distributed AIPS configuration includes
all the hardware and software building blocks mentioned earlier and was conceived to
demonstrate the feasibility of the AIPS architecture.

The laboratory configuration of the distributed AIPS system shown in Figure 1 consists of
four processing sites. Each processing site has a General Purpose Computer (GPC).
GPCs may be simplex or they may be FTPs of varying redundancy levels. Of the four
FTPs in the laboratory configuration, one is simplex, one is duplex, and two are triplex
processors. An FTP may also be quadruply redundant but none was fabricated for the
AIPS laboratory demonstration. The redundant FTPs are built such that they can be
physically dispersed for damage tolerance; each of the redundant channels of a FTP can be
as far as 5 meters from other channels of the same FTP. The FTP architecture is described
in more detail in the following subsection.

The GPCs communicate with each other over the Inter-Computer Network, in which the
circuit-switching nodes have been configured into redundant virtual buses. Each redundant
bus is referred to as a layer; these layers are totally independent and are not cross-strapped
to each other. Each layer contains a circuit-switched node for each processing site; thus
every processing site is serviced by three nodes of the IC network. GPCs are designed to
receive data on all three layers, but the capability of a GPC to transmit on the network
depends on the GPC redundancy level. Triplex FTPs can transmit on all three layers,
duplex FTPs on only two of the three layers, and simplex processors on only a single
layer. In duplex and triplex FTPs, a given processor can transmit on only one network
layer. Thus malicious behavior of a processor can disrupt only one layer.

The IC network and the GPC interfaces into the network are designed in strict accordance
with fault-tolerant systems theory so that any arbitrary random hardware fault, even a
Byzantine fault, can not disrupt communication between triplex FTPs. Thus the triplex IC
network, in conjunction with the GPC interfaces into the network, provides error-masking
capability for communication between two triplex computers.

The I/O network is demonstrated in the laboratory using a 15-node circuit-switched
network that interfaces with each of the GPCs on 1 to 6 nodes, depending on the GPC
redundancy level. The 15 I/O nodes can be configured in the laboratory as global,
regional, and local I/O networks to demonstrate various dimensions of the AIPS 1I/O
concept.
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1.1.1 AIPS Fault Tolerant Processors: Overview

The AIPS Fault-Tolerant Processor (FTP) is a significant enhancement of the CSDL FTP
[1,2] developed and used in many centralized real-time applications. The basic FTP
architecture has been enhanced to work efficiently and reliably in the distributed
information processing environment of AIPS. Figure 2 shows a simplified schematic of a
triplex AIPS FTP.

AIPS FAULT TOLERANT PROCESSOR

Network
Layers Multiprocessor

Redundant

Int puter Channels

and
Input/Output
Networks

SHARED
RESOURCES

POWER

Figure 2, Simplified Schematic of AIPS Fault Tolerant Processor

The first enhancement was the addition of a second processor to each channel so that
input/output operations can be performed in parallel with application function
computations. The 1/O processor (IOP) is used to perform the collection of sensor data and
transmission of actuator commands that are typical in traditional real-time systems. It also
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performs inter-computer communication, which is a significant burden in a distributed
system. The IOP thereby leaves its counterpart, the computational processor (CP), free
for calculation and decision-making tasks.  This architecture has several important
attributes.

First, the IOP and the CP share the data exchange and other hardware responsible for
providing fault tolerance in the FTP. This results in increased throughput without
additional hardware penalties for fault tolerance. Second, by performing all external
communications the IOP can, with appropriate help from System Services Software,
completely shield the CP and the applications programs running on it from the complexities
of a distributed processing environment. Third, by making all the incoming data congruent
before presenting it to the CP, the IOP also shields the applications programs from the
redundant nature of the system. These last two attributes greatly simplify the process of
developing applications software.

The second major enhancement to the basic FTP architecture was the addition of dedicated
hardware interfaces between the FTP and the Input/Output and the Inter-Computer
Networks. These are called the Input Output Sequencer (I0S) and the Inter-Computer
Interface Sequencer (ICIS), respectively. These interfaces are shared by the CP and the
IOP and are shown as blocks L, M, and N in Figure 2. L, M, and N refer to the three
layers of the IC network. These interfaces take care of the low level bus protocol and
formatting details (typically the physical layer and the data link layer), thus relieving the
IOP from having to manage the I/O and IC networks at microsecond time intervals. The
ICIS and IOS make it possible to interface the AIPS FTPs to very high speed buses. The
possibility of Byzantine faults in the network nodes causing single point FTP failures is
quite real, so the design of these interfaces adheres strictly to fault-tolerant systems
theoretical principles.

The AIPS FTP architecture is both symmetric and modular. It is symmetric in that either
processor can do the work of the other. Since both the CP and the IOP have access to all
the external interfaces, the FTP can be operated with only one processor per channel, if
desired. For AIPS applications that do not have intensive 1/O and/or IC communication,
one processor per channel may suffice. Or a combination of one-processor and two-
processor GPCs may be used, where sites with little I/O and/or IC activity have only one
processor per channel while other sites have two. The architecture is modular in that the
number of I/O and IC interfaces per FTP can be varied to fit various processor and network
redundancy levels and parallel and partitioned networks.

The AIPS FTP architecture, in combination with the networks, provides a system
architecture that is extremely flexible and expandable. It has been designed from the outset
to be a distributed architecture utilizing fault-tolerant computers. These qualities can only
be appreciated fully if one has faced the task of mating various existing avionics computers,



such as flight control and engine control computers, in order to create an integrated fault-
tolerant system.

1.1.2 Fault Tolerant Processor: Functional View

The Fault-Tolerant Processor (FTP) consists of a variable number of redundant processing
channels depending on the reliability requirements of the application. The AIPS
engineering breadboard FTP is intended to be operated primarily as a triplex, but it
provides fail-safe capability when operated as a duplex. A single channel can also be used
for non-critical operations as a simplex computer.

Each channel of an FTP consists of three sections: a computational section, an input/output
section, and the resources shared between them. The first section contains a Computational
Processor (CP), memory, timers and clocks. The second section contains an Input/Output
Processor (IOP), memory, timers, and clocks. The shared resources include shared
memory, data exchange hardware, timers, and external interface hardware. The redundant
processors are tightly synchronized using a fault-tolerant clock. Data is exchanged among
redundant channels on point-to-point links. The data exchange hardware also performs the
bit-for-bit voting, fault detection and masking functions in a manner that satisfies all the
requirements to protect the FTP from Byzantine failures, as described in Appendix A.
Apart from redundancy, there are other features that provide hardware and software fault
tolerance. These include watchdog timers, processor interlocks, a privileged operating
mode, handlers for hardware and software exceptions, and self tests.

A functional view of one channel of an AIPS FTP is shown in Figure 3. The CP and IOP
are identical, conventional processor architectures. Interval timers are used for scheduling
tasks and maintaining time-out limits on applications tasks (task watchdog timers). A
hardware watchdog timer is provided to increase fault coverage and to cause a processor to
fail-safe in case of hardware or software malfunctions. This timer resets the processor and
disables all of its outputs, if it is not reset periodically. The watchdog timer is implemented
independently of the basic processor timing circuitry. A monitor and interlock circuit in
each channel provides the capability to disable the outputs of faulty processors. Any two
correctly operating processors in a triplex FTP can disable the outputs of the third failed
processor through this interlock mechanism. A processor that is failed active is thus
prevented from transmitting erroneous data or commands on I/O networks, IC networks,
and local I/O devices.

The CP and IOP share resources through a bus that can be accessed by either processor.
These shared resources include memory; a system timer; the interchannel data exchange and
voting circuits; and interfaces to one or more 1/O networks, memory mapped I/O devices,
and the IC network.
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Figure 3. Fault Tolerant Processor Architecture: Functional View (One Channel)

One very important aspect of the FTP architecture is the interconnection hardware between
redundant channels. The interchannel data exchange and voting hardware serves three
purposes: it provides a path for distributing data in one channel to all other channels; it
provides a mechanism for comparing results of the redundant channels; and it provides a
path for distributing and comparing timing and control signals such as the fault tolerant
clock and external interrupts.

Two types of data exchanges are possible: a simplex exchange or a voted exchange. The
simplex exchange is used to distribute copies of data from one channel to all other
channels, for example, the value of a sensor that is available in only one channel. A voted
exchange, on the other hand, is used to compare and vote results of the redundant
channels, for example, an actuator command produced by all three channels which must be
voted before the command is actually issued.
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The interchannel data exchange and voting circuits appear on the shared bus as a set of
registers which include the transmit register, the receive register, and error latches. Data is
exchanged between redundant channels one word at a time by writing the word to the
transmit register and then reading the result from the receive register. When an exchange is
initiated, the transmitter in each channel sends to all channels either its own data (in the case
of a voted exchange) or the data available from another channel (in the case of a simplex
exchange). Each channel thus receives three copies of the data, which are voted on a bit-
by-bit basis. The majority result, which will be the same in all channels even in the
presence of an error, is placed in each processor's receive register. The type of exchange
(voted or simplex) which will be performed is determined by the particular transmit register
that is referenced when the exchange is initiated.

Either type of exchange takes on the order of 5 microseconds in the engineering breadboard
version of the AIPS FTP. The hardware is designed to lock out access to the receive
register while the exchange is in progress; a processor which tries to read the receive
register before the transaction has completed is suspended. As soon as the data becomes
available, the processor is released and the register read cycle completes normally. The
processor wait is thus transparent to the software.

The same software executes on a redundant FTP as on a simplex channel and application
code is written as if it were to operate on a simplex computer. All redundant processors
have identical software and execute identical instructions at exactly the same time. This
feature of the architecture is carried out in the data exchange hardware and software as well.
The data exchange hardware is designed such that all redundant processors execute
identical instructions when exchanging data whether it is redundant data to be voted or
simplex data being transmitted from one channel to others. Thus, for example, if a simplex
exchange is to be made from channel A, all three channels write to their FROM_A register.
While the contents of the FROM_A register are transmitted from A, voted, and deposited in
the receive registers of all three processors, the contents of the FROM_A registers in
channels B and C, which are meaningless, are ignored.

On a routine basis, the internally produced data that needs to be exchanged consists of error
information and cross channel comparisons of results for fault detection. These operations
can be easily confined to the program responsible for Fault Detection, Identification, and
Reconfiguration (FDIR). Voting of the results of the redundant computational processors
is performed in hardware by the input/output processors and the system software
responsible for the I/O services. Therefore, the remaining pieces of the Operating System
software and the applications programs need not be aware of the existence of the data
exchange registers. The task scheduler and dispatcher, for example, can view the
computational core as a single reliable processor.

Data from other processing sites is received by each IOP on the redundant IC buses,
8



hardware voted, and then deposited in their respective shared memories. Simplex source
data such as that from I/O devices is received by the IOP in one channel to which the I/O
device is physically connected. This data is then transmitted to the other two IOPs using
the data exchange registers. The congruent data is then deposited in all three shared
memories. Thus, the computational processor obtains all external data that has already
been processed for errors and source congruency requirements by I/O System Services
executing on the I/O processor.

The IOP and CP communicate through the shared memory. The IOP and CP have inde-
pendent operating systems that cooperate to assure that the data from input devices is made
available to the applications programs running in the CP in a timely and orderly fashion.
Similarly, the two processors cooperate on the outgoing information so that the output
devices receive commands at appropriate times. Hence the CP and IOP actions must be
synchronized to some extent. To help achieve this synchronization in software, a hardware
feature has been provided which enables one processor to interrupt the other. By writing to
a reserved address in shared memory the CP can interrupt the IOP and by writing to
another reserved location the IOP can interrupt the CP. Different meanings are assigned to
this interrupt by leaving an event code in some other predefined part of the shared memory,
before the inter-processor interrupt is asserted.

For routine flow of information in both directions, the shared memory is used without
interrupts but with suitable locking semaphores to pass consistent data sets. The interrupts
can be used to synchronize this activity as well as to pass time critical data that must meet
tight response time requirements. In order to assure data consistency, it is necessary that
while one side is updating a block of data the other side does not access that block of data.
This has been implemented using software semaphores. Hardware support for semaphores
is provided in the form of the test and set instruction.

The architectural approach described above provides several significant operational
benefits. The most important of these is the decoupling of the computational and
input/output streams of transactions. The computational processor is unburdened from
having to do I/O transactions. To the CP, all I/O appears memory mapped including not
only I/O devices but also all other computers in the system. That is, each sensor, actuator,
switch, computer, etc., with which the FTP interfaces can be addressed simply by reading
or writing words in the shared memory.



1.2 AIPS System Software

The AIPS system software, as well as the hardware, has been designed to provide a virtual
machine architecture that hides hardware redundancy, hardware faults, multiplicity of
resources, and distributed system characteristics from the applications programmer.
Section 1.2.1 discusses the approach used for the AIPS system software design. Section
1.2.2 is a high level description of the system services that are provided for AIPS users.

1.2.1 AIPS Software Design Approach

The approach used to design the AIPS system software is part of the overall AIPS system
design methodology. An abbreviated form of this system design methodology is shown in
Figure 4. This methodology began with the application requirements and eventually led to
a set of architectural specifications. The architecture was then partitioned into hardware and
software functional requirements. This report documents the design approach used for
Local System Services software, beginning with the functional requirements and
proceeding through detailed specifications.

Hardware and software for the AIPS architecture is being designed and implemented in two
phases. The first phase is the centralized AIPS configuration. The centralized AIPS
architecture, as shown in Figure 5, is configured as one triplex Fault Tolerant Processor
(FTP), an Input/Output network and the interfaces between the FTP and the network,
referred to as input/output sequencers (IOS). The laboratory demonstration of the
input/output network consists of 15 circuit-switched nodes which can be configured as
multiple local I/O networks connected to the triplex GPC. For example, the 1/O network
may be configured as one 15-node network, as shown in Figure 5, or as three 5-node
networks. The software building blocks that have been designed and implemented for the
AIPS centralized architecture include local system services and I/O system services. The
following subsection 1.2.2 gives an overview of all the AIPS software building blocks.
The remainder of the document, Sections 2 through 6, focuses on the functional design
and detailed specification of the Local System Services.

10



Application
Requirements

AIPS Attributes

AIPS Architecture
Specifications
&
Guidelines

System Software
Functional
Requirements

System Hardware
Functional
Requirements

System Software

System Hardware
Specifications

Specifications

IC System
Services

System
@ @ @@ Local System /0 System Manager

Services Services

Figure 4. AIPS System Design Approach

11



DiU

15-NODE 1/0 NETWORK

7 L

IUS1 10S 2 IUSI IUS2 Sl IDS2

TRIPLEX FTP

Node

Active Link

Spare Link

Device Interface Unit

GPC/Network Interface (I/O Sequencer)

Figure 5. Centralized AIPS Configuration

12

DiU

DiU




1.2.2 AIPS System Software Overview

As shown in Figure 6, AIPS system software provides the following AIPS System
Services: local system services, communication services, system management, and I/O
system services. The system software is being developed in Ada. System services are
modular and partitioned naturally according to hardware building blocks. The distributed
AIPS configuration includes all the services. Versions of the system software for specific
applications can be created by deleting unused services from this superset. The System
Manager functions reside on only one GPC, but all functions of the System Manager are
not necessarily on the same GPC. The other system services are replicated in each GPC.
A brief description of each of the services follows.

COMPUTER
SYSTEM
SERVICES

Figure 6. Top Level View Of System Services

1.2.2.1 Local System Services
The local system services provided in each GPC are: GPC initialization, real-time operating

system, local resource allocation, local GPC Fault Detection, Isolation, and
Reconfiguration (FDIR), GPC status reporting, and local time management (see Figure 7).
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The function of GPC initialization is to bring the GPC to a known and operational state
from an unknown condition (cold start). GPC initialization synchronizes the CPs,
synchronizes the IOPs and resets or initializes the GPC hardware and interfaces (interval
timers, real time clock, interface sequencers, DUART, etc.) It makes the hardware state of
the redundant channels congruent by alignment of memory and control registers. It then
activates the system baseline software that is common to every GPC.

The AIPS real-time operating system supports task execution management, including
scheduling according to priority, time and event occurrence, and is responsible for task
dispatching, suspension and termination. It also supports memory management, software
exception handling, and intertask communication between companion processors (IOP and
CP). The AIPS operating system resides on every CP and IOP in the system. It uses the
vendor-supplied Ada Run Time System (RTS), and includes additional features required
for the AIPS real-time distributed operating system.

The GPC resource allocator coordinates and determines responsibility for any global or

migratable functions from the system resource manager. It also monitors commands from
the system resource manager to start or stop any function.
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The GPC status reporter collects status information from the local functions, the local GPC
FDIR, the IC system services and the I/O system services. It updates its local data base
and disseminates this status information to the system manager.

GPC FDIR has the responsibility for detecting and isolating hardware faults in the CPs,
IOPs, and shared hardware. It is responsible for synchronizing both groups of processors
in the redundant channels of the FTP and for disabling outputs of failed channel(s) through
interlock hardware. After synchronization, all CPs will be executing the same machine
language instruction within a bounded skew, and all IOPs will be executing the same
machine language instruction within a bounded skew. GPC FDIR logs all faults and
reports status to the GPC status reporter. It is responsible for the CPU hardware exception
handling and downmoding/upmoding hardware in response to configuration commands
from the system manager. It is also responsible for transient hardware fault detection and
for running low priority self tests to detect latent faults. This redundancy management
function is transparent to the application programmer.

The local time manager works in cooperation with the system time manager to keep the
local real time initialized and consistent with the universal time. It is also responsible for
providing time services to all users.

Sections 2 through 6 describe the Local System Services functional requirements and
design and detailed specifications. Each of these sections describes one of the Local
System Services functions. Section 7 concludes with a summary of results and
suggestions for future work in this area.

1.2.2.2 Inter-Computer System Services

The inter-computer system services provide two functions: (1) inter-computer user
communication services, that is, communication between functions not located in the same
GPC, and (2) inter-computer network management (Figure 8).

The IC user communication service provides local and distributed inter-function
communication which is transparent to the application user. It provides synchronous and
asynchronous communication, performs error detection and source congruency on inputs,
and records and reports IC communication errors to IC network managers. Inter-computer
communication can be done in either point to point or broadcast mode and is implemented
in each GPC.

The IC network manager is responsible for the fault detection, isolation and reconfiguration
of the network. The AIPS distributed configuration consists of three identical, independent
IC network layers which operate in parallel to dynamically mask faults in a single layer and
provide reliable communication. There is one network manager for each network layer.
However, the three network layer managers do not need to reside in the same GPC. They
are responsible for detecting and isolating hardware faults in IC nodes and links and for
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reconfiguring their respective network layer around any failed elements. The network
manager function is transparent to all application users of the network.

REALLOC FUNCTION
FLAG ALLOCATION

GPC STATUS

LOCAL IC STATUS

Figure 8. Inter-Computer System Services

1.2.2.3 System Manager

The system manager is a collection of system level services including the applications
monitor, the system resource manager, the system fault detection, isolation and
reconfiguration (FDIR), and the system time manager (Figure 9).

The applications monitor interfaces with the applications programs and the AIPS system
operator. It accepts commands to migrate functions from one GPC to another, to display
system status, to change the state of the system by requesting a hardware element state
change, and to convey requests for desired hardware and software configurations to the
system resource manager.

The system resource manager allocates migratable functions to GPCs. This involves the
monitoring of the various triggers for function migration such as failure or repair of
hardware components, mission phase or workload change, operator or crew requests and
timed events. It reallocates functions in response to any of these events. It also designates
managers for shared resources and sets up the task location data base in each GPC.

The system fault detection, isolation and reconfiguration (FDIR) is responsible for the
collection of status from the inter-computer (IC) network managers, the 1/O network
managers, and the local GPC redundancy managers. It resolves conflicting local fault
isolation decisions, isolates unresolved faults, correlates transient faults, and handles
processing site failures.
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Figure 9. System Manager

The system time manager, in conjunction with the local time manager on each GPC, has the
job of maintaining a consistent time across all GPCs. The system time manager indicates to
the local time manager when to set its value of time. It also sends a periodic signal to
enable the local time manager to adjust its time to maintain consistency with an external time
source such as the GPS Satellites or an internal source such as the real time clock in the
GPC which hosts the system time manager software.

1.2.2.4 I/O System Services

The I/O system services provide efficient and reliable communication between the user and
external devices (sensors and actuators). The I/O system services software is also
responsible for the fault detection, isolation and reconfiguration of the I/O network
hardware and GPC/network interface hardware (input/output sequencers).

I/0 system services is made up of three functional modules: I/O user interface, I/O
communication management and the I/O network manager (Figure 10).

17



¥/O Database

IOR Database
/
IOR
Specifications
IORID
'?""I N
User Input Commumcatlon : ,.
& Status " .
YO Requ& OR . =
Spec'ﬁ”t'l"(;'k nput TOR Commands
Output St:.tzls Voted Congruent Node
| + User Data Commands
Data & VO Network
Status Congruent Manager
Node Data Commands
&
 sus VO Status
YO Service

Figure 10. I/O System Services

The I/O user interface provides a user with read/write access to I/O devices or Device
Interface Units (DIUs), such that the devices appear to be memory mapped. It also gives
the user the ability to group I/O transactions into chains and I/O requests, and to schedule
I/O requests either as periodic tasks or on demand tasks. A detailed description of the I/O
user interface is provided in [3].

The I/O communication manager provides the functions necessary to control the flow of
data between a GPC and the various I/O networks used by the GPC. It also performs
source congruency and error detection on inputs, voting on all outputs, and reports
communication errors to the I/O Network Manager. It is also responsible for the
management of the I/O request queues. A detailed description of the I/O communication
manager is provided in [3].
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The I/O Network Manager is responsible for detecting and isolating hardware faults in I/O
nodes, links, and interfaces and for reconfiguring the network around any failed elements.
The network manager function is transparent to all application users of the network. A
detailed description of the I/O Network Manager is provided in [4].
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2.0 GPCINITIALIZATION

It is the responsibility of the GPC INIT module to bring the GPC to a known and
operational state at startup and to initialize the system software tasks and the application
procedures and/or tasks.

2.1 GPC Initialization Functional Requirements and Design

The function of GPC initialization is to bring the GPC to a known and operational state. If
the GPC has a redundancy level greater than a simplex, the initialization software module is
responsible for controlling the transition from an unknown, uninitialized state of the FTP
hardware to a state such that all available channels are operating in an instruction-
synchronous manner. Furthermore, the module will insure that the channels operating in
such a synchronous manner will have “aligned”, or “bit-for-bit identical”, states of all
redundant hardware elements (e.g., RAM and interval timers). Once this instruction-
synchronous, hardware-aligned status is established for the FTP, it will continue to operate
in a synchronous mode until a fault forces a channel out of synch. (This statement assumes
all external data to the FTP is made congruent across channels by the appropriate I/O
software.)

Upon reset, a processor will vector to the start-up entry point of the operating system.
Standard initialization operations must be performed at this point:

) Inidalization of standard hardware such as interval timers, real time
clock, and DUARTSs

. Exception vector initialization
. Interrupt handler initializations
. Software initialization (Ada “elaboration”, including initialization

and activation of tasks)

. Execution of power-on self tests

After the standard initialization functions are performed, the FTP specific initialization is
performed. The redundant channels are synchronized to the instruction level. Since each
channel has two processors, each processor is synchronized with the other processors of
its type (i.e., CPs or IOPs). In addition, its companion must be synchronized with other
processors of the companion's type, i.e., either both processors of a channel are good or
they are both failed. Thus, processor activity within each channel must be coordinated
before and during the synchronization process. The processors within each channel
synchronize with one another to the extent that all of the intra-channel processors finish
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their pre-synch initialization and signal their readiness to operate in synch with their
corresponding inter-channel processors. After instruction-level synchronization, the
hardware state of the redundant channels is made congruent by alignment of memory and
control registers. The channel synchronization and alignment functions are performed
within the SYNC software module which is described in Section 4.2.2.2,

After channel synchronization the power-on self tests are performed in order to check for
any hardware faults in memory, error latches, voters, real-time clock and monitor interlock
hardware. After the system is operational the self tests continue to run in background to
check for any latent faults, but they are run in their entirety at system startup. (Execution of
the self tests at power-on is optional in the laboratory engineering model.)

Next the operating system tasks are scheduled. These tasks include the redundancy
management sequencer task, the GPC Status Reporter/CRT display tasks, and the 1/O
system services tasks. Finally, the application tasks are scheduled and the self test loop is
entered. The self tests execute at the lowest priority when the system would otherwise be
idle.

2.2  GPC Initialization Software Specifications
Process Name: Main Program

Inputs: DUART, interval timers, real time clock
Unsynchronized Processors, Channels
Non Aligned Volatile memory, control registers
Uninitialized Task Control Blocks, Tasks Stacks
Uninitialized interrupt handlers, exception handlers
Uninitialized IOS, ICIS

Unscheduled Tasks
Outputs: An operational FTP in a known synchronous state
All Tasks scheduled.
Notes: This process calls the SYNC process, Section 4.2.2.2

Description:

It is the responsibility of the GPC Init function to bring the FTP to an operational mode at
startup and to initialize the application procedures and/or tasks. GPC Init resides on both
the IOP and CP of each processing site. Since Ada requires that the process which initially
executes be named ‘Main Program’, the GPC Init function is so named in the Ada source
code. Figure 11 is a diagram of the control flow of the GPC Init function. First the
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DUARTS, interval timers, real time clock and the interrupt and exception vectors are
initialized. Then the elaboration of all system packages and tasks is completed. This
includes initialization of every task control block and task stack area. Next the available
channels of the FTP are synchronized and all volatile memory, control registers, interval
timers, and real time clock are aligned in the synchronized channels. This is done by the
SYNC process, Section 4.2.2.2, in both the CP and IOP processors.

Once the FTP is running synchronously, a complete iteration of the self tests is performed.
These tests, which detect and identify faults in memory, error latches, voters, the real-time
clock and the monitor interlock, are described in Section 4.2.1.3. The difference in the
power-on self tests and the background self tests is that the power-on tests are not
interrupted until an entire iteration has been completed.

Next the Local System Services sequencer task, the FDIR/Time Manager, is scheduled.
This task is responsible for the execution of the periodic Local System Service functions:
Fast FDIR, Transient FDIR and the Local Time Manager. The FDIR/Time Manager is a
high priority, periodic task and presently executes every 40 milliseconds. The periodicity
of this task is dependent on the particular application running on the GPC; it may be
different for each GPC site. The FDIR/Time Manager and the three processes it controls
are discussed in Sections 4.2.1, 4.2.2 and 6.1.1.2.3.

Finally, the GPC Status Reporter display tasks are scheduled. There are three tasks for
CRT display and one task for Macintosh display. Like the main task, these tasks are of the
lowest priority and are time-sliced with each other and the main program. The GPC Status
Reporter/display tasks are described in Section 5.2.2. The time slice interval is equal to the
period of the fastest periodic task in the system.

At this point all of the Local System Services tasks have been scheduled and the FTPisin a
known and operational state. I/O System Services tasks and any application tasks may
now be scheduled and/or application procedures called.

The main program finally enters the self test loop where it executes continually at the lowest

priority the self tests in order to uncover latent faults. The self tests are described in
Section 4.2.1.3. If needed, applications may call procedures within this loop also.
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3.0 REAL TIME OPERATING SYSTEM

The foundation of the system software for AIPS is a real-time, multi-tasking operating
system providing mechanisms for task scheduling, inter-task communication, memory
management, and interrupt handling. The AIPS operating system consists of the vendor-
supplied Ada Run Time System (RTS) along with those extensions needed to implement
the functions given below. The extensions are written in Ada with time critical sections
done in assembly language to reduce system overhead. The AIPS operating system resides
on every IOP and CP.

3.1 Real Time Operating System Functional Requirements

The AIPS operating system provides the basic system services necessary to support the
other application software tasks (see Figure 12). These services include:

1. Task execution management, including scheduling according to priority, time
and event occurrence; dispatching (context switching); task suspension and
termination.

2. Memory management, including global data allocation, local data
allocation/deallocation and shared data access routines (protected read and
write).

3. Intertask communication, including both synchronous and asynchronous
(mailbox) communication.

4. Software exception handling.

REAL-TIME
OPERATING SYSTEM

EXFTESUI]?ION MEMORY RIASK EsgcsmAgr%
COMMUNICATIONS
MANAGEMENT MANAGEMENT HANDLING

Figure 12. ATPS Real Time Operating System
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3.1.1 Task Execution Management

The basic execution unit is the Ada "task". The management of task execution includes
scheduling according to priority, time and event occurrence, dispatching, task suspension
and termination. A static priority is associated with each task. Task execution order is
according to priority and proceeds in a run-until-blocked mode until one of the following
conditions occurs:

task completion,

self suspension,

preemption by hardware interrupt,

explicit scheduling of higher priority task, or
time slicing of equal priority task.

DN AW =

A task is capable of scheduling itself or other tasks according to time (one-shot or periodic)
or upon the occurrence of a software defined event. The option also exists to bracket the
region of a task's periodicity by time or events; i.e. provide start/stop times or events.

The RTS requirements of Ada provide minimal user control of task scheduling with the
Ada rendezvous and the "delay" statement. Scheduling by event is not an Ada
requirement. So extensions to the Ada RTS are necessary in order for the task to schedule
itself or another task cyclically, as the result of an event, at an absolute time, immediately,
or to deschedule a task (remove all scheduling requirements).

AIPS requires two additional functions that are not provided by Ada RTS vendors: (1)
preserving the data exchange receiver register for each task during a context switch, and (2)
voting the program counter (PC) after every interrupt. Preserving the data exchange
receiver register is necessary because a data exchange requires two instructions, a write to
the transmitter followed by a read from the receiver, and an interrupt could occur after the
write but before the read. When a task is suspended, therefore, the receiver value must be
saved in the task control block; when a task is resumed, this value must be restored to the
receiver. In the laboratory demonstration implementation, which uses a Motorola 68010
processor with an 8 MHz clock, restoring the receiver register takes approximately 5 ps.

Voting the PC after every interrupt is necessary because an interrupt could bring
unsynchronized channels back into sync, thus masking the faulty condition. The state of
each channel at the time of the interrupt can be determined by voting the PC; when a
channel's PC is different from the majority value the operating system sets a flag for the
FDIR task. This procedure ensures that a fault is detected as early as possible. In the
laboratory demonstration implementation, which uses a Motorola 68010 processor with an
8 MHz clock, the PC check takes approximately 43 ps, of which 5 ps is used for the data

exchange.
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3.1.2 Memory Management

There are two types of memory in the FTP, local memory and shared memory. Local
memory is memory on the private bus and can be accessed only by a single processor.
Shared memory is memory on the shared bus and can be accessed by both processors in a
channel.

Local memory is used for task execution. The operating system is responsible for
allocating and deallocating all local memory space from heaps and stacks. The user must
be able to specify the amount of local memory to be allocated for tasks and data objects.
Also, routines are provided for the controlled access (protected read and writes) to data
objects shared between multiple application tasks resident on the same processor.

Shared memory can be accessed by tasks resident on different processors and by several
tasks resident on the same processor. Routines are provided for controlled access
(protected read and writes) to data objects shared between multiple application tasks
resident on different processors.

3.1.3 Intertask Communication

Local intertask communication is communication that takes place between tasks executing
on the same processor. The operating system supports two methods of local inter-task
communication: synchronous and asynchronous. Synchronous communication requires
the communicating tasks to be at a specified synchronization point and is implemented in
Ada by the "rendezvous”. In local asynchronous inter-task communication, the commun-
icating tasks are not required to be at a specified synchronization point; rather the
communication is via data "mailboxes" using the local memory controlled access routines.

Remote inter-task communication is communication that takes place between tasks
executing on different processors. The operating system supports two types of remote
inter-task communication: remote task release and asynchronous "mailbox"
communication. Remote task release means that a task running on one processor can start
or release a task on the other processor. The remote inter-task mailbox communication is
supported by using the shared memory controlled access routines.

3.1.4 Software Exceptions

Software exceptions not explicitly handled by the applications tasks are intercepted by the
operating system and the task is purged.
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3.2  Real Time Operating System Software Specifications

3.2.1 Task Execution Management Process Descriptions

(I‘ASK EXECUTION MANAGEMENT )

TASK TASK TASK TASK
SCHEDULING DISPATCHING SUSPENSION TERMINATION
PRIORITY PRIORITY TIME TASK
SCHEDULE DISPATCH SUSPEND COMPLETE
TIME TIME EVENT TASK
SCHEDULE DISPATCH SUSPEND CANCEL
EVENT EVENT TASK
SCHEDULE DISPATCH ABORT

SIGNAL
EVENT

Figure 13. Task Execution Management
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3.2.1.1 Process Name: PRIORITY_SCHEDULE

* GENERAL_TASK_ID

* GENERAL_TASK_ID.TASK_NOT_WAITING

Implementation Requirements:
* Initiation:
e  Ondemand

Process Description:

If task to be scheduled is not waiting at a scheduling synchronization point, the
TASK_NOT_WAITING indicator is set and an immediate return to the caller is performed.

Otherwise, if priority of task to be scheduled (GENERAL_TASK_ID.PRIORITY) is
greater than the priority of the active task (ACTIVE_TASK_ID.PRIORITY), execution of
the scheduled task is initiated via the PRIORITY_DISPATCH process; otherwise, the task
being scheduled is placed on the ready queue according to its priority and a return to the
active task is performed.

3.2.1.2 Process Name: TIME SCHEDULE

Inputs:
e GENERAL_TASK_ID
*+  GENERAL_TASK_ID.REPETITION_TIME
*  GENERAL_TASK_ID.COMPLETION_TIME
* GENERAL_TASK_ID.COMPLETION_EVENT
« INITIATION_TIME

Outputs:

« None

Implementation Requirements:
e Initiation:
- Ondemand

Process Description:

Task to be scheduled (GENERAL_TASK_ID) is placed on the time queue according to the
specified start time (INITIATION_TIME).

If task is initial task on time queue, the time queue interval timer is updated.
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3.2.1.3 Process Name: EVENT_SCHEDULE

Inputs:
* GENERAL_TASK_ID
*  GENERAL_TASK_ID.COMPLETION_TIME
*  GENERAL_TASK_ID.COMPLETION_EVENT
« EVENT

* None

Implementation Requirements:
e Initiation:
-  Ondemand

Process Description:

Task to be scheduled (GENERAL_TASK_ID) is placed on the event queue indicated by
the specified event(EVENT).

3.2.14 Process Name: PRIORITY_DISPATCH
Inputs:
e None
Outputs:
* None
Implementation Requirements:
e Initiation:

- ready task priority > active task priority
- active task suspension
- active task termination

Process Description:

If a task is active (ACTIVE_TASK_ID /=null), it is preempted and placed on the ready
queue according to its priority (ACTIVE_TASK_ID.PRIORITY).

Execution of the highest priority task on the ready queue is initiated.
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3.2.1.5 Process Name: TIME DISPATCH

Inputs:

e None
Outputs:

e TIME_TASK_ID.TASK_NOT_WAITING
Implementation Requirements:

e Initiation:

- Time queue interval timer interrupt
Process Description:

If task at the head of the time queue (TIME_TASK_ID) is not waiting at a scheduling
synchronization point, the TASK_NOT_WAITING indicator is set and dispatching of the
task is not performed.

Otherwise, if priority of time task (TIME_TASK_ID.PRIORITY) is greater than priority of
active task (ACTIVE_TASK_ID.PRIORITY), the PRIORITY_DISPATCH process is
invoked; otherwise, the time task is placed on the ready queue according to its priority.

If the time task is periodic and the current time is less than TIME_TASK_ID.COMPLET-
ION_TIME or TIME_TASK_ID.COMPLETION_EVENT has not occurred, then the time
task is replaced on the time queue according to its period
(TIME_TASK_ID.REPETITION_TIME). Otherwise, the task is removed from the time
queue.

The time queue interval timer is set to interrupt for the task now at the head of the time
queue.
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3.2.1.6 Process Name: SIGNAL_EVENT

Inputs:
e EVENT
» GENERAL_TASK_ID
Implementation Requirements:
e Initiation:
- On occurrence of event
Process Description:

All tasks (GENERAL_TASK_ID) on event queue indicated by the specified event
(EVENT) are dispatched via the EVENT_DISPATCH process.

3.2.1.7 Process Name: EVENT_DISPATCH

Inputs:
e GENERAL_TASK_ID

Outputs:
« GENERAL_TASK_ID.TASK_NOT_WAITING

Implementation Requirements:
e Initiation:
- Invoked by SIGNAL_EVENT process

Process Description:

If event task (GENERAL_TASK_ID) is not waiting at a scheduling synchronization point,
the TASK_NOT_WAITING indicator is set and dispatch of the task is not performed.

Otherwise, if priority of event task (GENERAL_TASK_ID.PRIORITY) is greater than
priority of active task (ACTIVE_TASK_ID.PRIORITY), the PRIORITY_DISPATCH
process is invoked; otherwise, the event task is placed on the ready queue according to its
priority.

If current time is greater than GENERAL_TASK_ID.COMPLETION_TIME or
GENERAL_TASK_ID.COMPLETION_EVENT has occurred, the event task is removed
from the specified event queue. Otherwise, the task is left on the queue.
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3.2.1.8 Process Name: TIME_SUSPEND

Inputs:

« DELAY_TIME
Outputs:

e None
Implementation Requirements:

e Initiation:

-  Ondemand
e This process is implemented in Ada by the "delay" statement.

Process Description:

The active task (ACTIVE_TASK_ID) is preempted and the TIME_SCHEDULE process is
invoked to place task on the time queue for the specified delay time (DELAY_TIME).

Ready task execution is initiated by invoking the PRIORITY_DISPATCH process.

3.2.1.9 Process Name: EVENT_SUSPEND
Inputs:

e EVENT
Outputs:

e None
Implementation Requirements:

e Initiation:

- Ondemand

Process Description:

The active task (ACTIVE_TASK_ID) is preempted and the EVENT_SCHEDULE process
is invoked to place task on the event queue indicated by the specified event (EVENT).

Ready task execution is initiated by invoking the PRIORITY_DISPATCH process.
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3.2.1.10 Process Name: TASK COMPLETE

Inputs:
e None
Outputs:
« None
Implementation Requirements:
e Initiation:

- Ondemand
o This process is implemented in Ada by the normal task completion processing
of the run time system.

Process Description:

The active task (ACTIVE_TASK_ID) is deactivated. The ready task (READY_TASK_ID)
is initiated by invoking the PRIORITY_DISPATCH process.

3.2.1.11 Process Name: TASK_CANCEL

Inputs:

« GENERAL_TASK_ID
Outputs:

* None
Implementation Requirements:

e Initiation:

- Ondemand

Process Description:

The specified task (GENERAL_TASK_ID) is removed from the time queue and any
applicable event queues. If the task has been preempted (i.e. is on the run queue), it is
allowed to run to completion.
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3.2.1.12 Process Name: TASK _ABORT

Inputs:
 GERNERAL_TASK_ID
Outputs:
* None
Implementation Requirements:
e Initiation:

- Ondemand
» This process is implemented in Ada by the "abort" statement.

Process Description:

The specified task (GENERAL_TASK_ID) and any dependent tasks are immediately
removed from all queues (ready, time and event) in a manner least disruptive to the system
as a whole. If the aborted task is the active task (GENERAL_TASK_ID =
ACTIVE_TASK_ID), the PRIORITY_DISPATCH process is invoked.

3.2.2 Memory Management Process Descriptions

( MEMORY MANAGEMENT )

( HEAP MANAGEMENT ) SHARED DATA
MANAGEMENT
HEAP WRITE
DATA
ALLOCATE
LOCAL OBJECT, CRFAD
DATA
ALLOCATE
GLOBAL OBJECT
FREE
HEAP

FREELOCAL
OBJECT

Figure 14. Memory Management



3.2.2.1 Process Name: ALLOCATE HEAP

* A STORAGE exception shall be raised if the requested amount of memory is

« This process is implemented by the vendor supplied run time system at task

Inputs:
« GENERAL_TASK_ID
o GENERAL_TASK_ ID.HEAP_SIZE
Outputs:
« GENERAL_TASK_ID.HEAP_BASE
Implementation Requirements:
o Initiation:
- Task elaboration
not available.
elaboration.
Process Description:

The specified amount (GENERAL_TASK_ID.HEAP_SIZE) of consecutive heap memory
is allocated to the requesting task for local stack space and for allocating local data objects.

The base location address (GENERAL_TASK_ID.HEAP_BASE) of memory allocated is

returned to the process user.
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3.2.2.2 Process Name: ALLOCATE_LOCAL_OBJECT

Inputs:
« LOCAL_OBJECT_SIZE
Outputs:
« LOCAL_OBJECT_LOCATION
Implementation Requirements:
e Initiation:
- Ondemand
» A STORAGE exception shall be raised if the requested amount of memory is
not available.

» This process is implemented in Ada by the "new" allocator.
Process Description:

The specified amount (LOCAL_OBJECT_SIZE) of the requesting task's local heap space
is allocated for use by the requesting task as a data object.

The object location address (LOCAL_OBJECT_LOCATION) is returned to the process
caller.

3.2.23 Process Name: ALLOCATE GLOBAL_OBJECT
Inputs:
e GLOBAL_OBJECT_SIZE
Outputs:
e GLOBAL_OBJECT_LOCATION
Implementation Requirements:
e Initiation:
- Ondemand
» A STORAGE exception shall be raised if the requested amount of memory is
not available.
Process Description:

The specified amount (GLOBAL_OBJECT_SIZE) of the global memory is allocated for
use by all tasks as a data object.

‘The object location address (GLOBAL_OBJECT_LOCATION) is returned to the process
caller.
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3.2.2.4 Process Name: FREE_HEAP

Inputs:
« GENERAL_TASK_ID
« GENERAL_TASK_ID.HEAP_SIZE
» GENERAL_TASK_ID.HEAP BASE

Outputs:
* None
Implementation Requirements:
e Initiation:
- Task Completion

Process Description:

The specified amount (GENERAL_TASK_ID.HEAP_SIZE) of local heap memory
(GENERAL_TASK_ID.HEAP_BASE) previously allocated to the indicated task
(GENERAL_TASK_ID) is released.

3.2.2.5 Process Name: FREE LOCAL_OBJECT

Inputs:
+ LOCAL_OBJECT_SIZE
¢« LOCAL_OBJECT_LOCATION

Outputs:
¢+ None
Implementation Requirements:
+ Initiation:
-  Ondemand

» This process is implemented in Ada by the UNCHECKED_DEALLOCATION
generic.

Process Description:

The specified amount (LOCAL_OBJECT_SIZE) of the requesting task's local heap space
(LOCAL_OBJECT_LOCATION) previously allocated is released.
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3.2.2.6 Process Name: WRITE DATA

Inputs:
o SHARED_DATA
o ACTIVE_TASK_ID.OUT_DATA

Outputs:
e None
Implementation Requirements:
e Initiation:
- Ondemand
Process Description:
The following actions are performed when writing to a shared data area (local or global):

If the shared data area (SHARED_DATA.AREA) is locked
(SHARED_DATA.LOCKED = true), the task is suspended (via process
EVENT_SUSPEND) until shared data is unlocked (SHARED_DATA.LOCKED =
false).

Lock data area (SHARED.DATA.LOCKED = true).
Write data (ACTIVE_TASK.OUT_DATA).
Unlock data area (SHARED_DATA.LOCKED = false).
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3.2.2.7 Process Name: READ DATA

 SHARED_DATA

e ACTIVE_TASK_ID.IN_DATA
Implementation Requirements:
e Initiation:
-  Ondemand
Process Description:
The following actions are performed when writing to a shared data area (local or global):
If the shared data area (SHARED_DATA.AREA) is locked
(SHARED_DATA.LOCKED = true), the task is suspended (via process
EVENT_SUSPEND) until shared data is unlocked (SHARED_DATA.LOCKED =
false).
Lock data area (SHARED.DATA.LOCKED = true).
Read data (ACTIVE_TASK.IN_DATA).

Unlock data area (SHARED_DATA.LOCKED = false).
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3.2.3 Intertask Communication Process Descriptions

( INTERTASK COMMUNICATION )

SYNCHRONOUS SYNCHRONOUS
SEND RECEIVE

Figure 15, Intertask Communication
3.2.3.1 Process Name: SYNCHRONOUS_SEND

Inputs:
 RECEIVER_TASK_ID
 SENDER_TASK_ID.OUT_DATA

Outputs:
e SENDER_TASK_ID.IN_DATA

Implementation Requirements:
e Initiation:
- Ondemand
» A TASKING exception is raised if a receiver task acknowledgement is not
received.

» This process is implemented in Ada by the "rendezvous" entry call.
Process Description:

The SYNCHRONOUS__SEND process includes the following actions during synchronous
intertask communication:

Obtain data from sender task (SENDER_TASK_ID.OUT_DATA) and store for
receiver task (RECEIVER_TASK_ID.IN_DATA).

Initiate communication event with the specified receiver task.

Suspend sender task (via the EVENT_SUSPEND process) until receiver task
acknowledges communication event completion (via the SIGNAL_EVENT)
process.

Obtain data from receiver task (RECEIVER_TASK_ID.OUT_DATA) and store for
sender task (SENDER_TASK_ID.IN_DATA).
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3.2.3.2 Process Name: SYNCHRONOUS_RECEIVE

Inputs:
« RECEIVER_TASK_ID.IN_DATA
Outputs:
 RECEIVER_TASK_ID.OUT_DATA
Implementation Requirements:
¢ Initiation:
- Ondemand

» This process is implemented in Ada by the "rendezvous" accept statement.
Process Description:

The SYNCHRONOUS_RECEIVE process includes the following actions during
synchronous intertask communication:

If a sender task has not initiated a communication event, the receiver task is
suspended (via the EVENT_SUSPEND process) pending that event.

Obtain input data from sender task (RECEIVER_TASK_ID.IN_DATA).
Perform communication processing.
Store output data for sender task (RECEIVER_TASK_ID.OUT_DATA).

Acknowledge communication event completion via the SIGNAL_EVENT process.
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3.2.4 Software Exception Process Description

( SOFTWARE EXCEPTION )
RAISE
EXCEPTION
Figure 16. Software Exception
3.24.1 Process Name: RAISE_EXCEPTION

Inputs:
 GENERAL_TASK_ID
 EXCEPTION_ID

Outputs:
* None
Implementation Requirements:
e Initiation:

- Detection of software exception
« This process is implemented in Ada by the vendor supplied run time system

Process Description:
Upon detection of a software exception (EXCEPTION_ID), the exception occurrence is
recorded and the appropriate exception handler (GENERAL_TASK_ID.EXCEPTION_-

HANDLER (EXCEPTION_ID) specified by the executing task is performed. If there is no
specified exception handler, the task is purged.
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4.0 GPCFAULT DETECTION, IDENTIFICATION AND RECONFIGURATION

The AIPS FTP uses hardware redundancy with fault detection and masking capabilities to
provide fault tolerance. The design of that hardware is based on theoretical principles and
is described in detail in Appendix A. The fault tolerance provided by the hardware is
greatly enhanced by the Fault Detection, Identification and Reconfiguration (FDIR)
functions which are part of the FTP local operating system. While the hardware alone in a
triplex FTP could sustain one fault, the FDIR software allows it to sustain multiple
successive faults and identifies the fault(s) for an operator, thus making the FTP much
more robust and serviceable.

4.1 GPC Fault Detection, Identification and Reconfiguration Functional Requirements
and Design

GPC FDIR is a process which is part of the local operating system in each AIPS
processing site. The primary purpose of GPC FDIR is to keep the GPC and its external
devices functioning correctly in the presence of any number of hardware faults. To achieve
this, FDIR has two main functions:

* identifying a failed channel, i.e., detecting a fault, isolating it to a single
channel, masking the faulty channel's inputs, and disabling its outputs.

» recovering a failed channel, i.e., determining that the fault no longer exists,
bringing the channel into line with the two synchronized channels, accepting the
channel's inputs, and-enabling its outputs.

These functions must consume a minimum of the processing resources of the FTP under

both fault and no-fault conditions. The tasks and procedures used by FDIR to implement
these functions are summarized in Figures 12 and 13 and described in detail in the
following sections.

A secondary purpose of FDIR is to report the status of the local GPC to the System
Manager via the GPC Status Reporter. Therefore, faults and reconfiguration events are
logged so that the GPC Status Reporter may transfer the information to the System
Manager, which may be running on another GPC.

PRECEDING PAGE BLANK NOT FILMED
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PROCESS DESCRIPTION

FAULT DETECTION AND ISOLATION

Fast FDIR Periodic, high-priority task
Watchdog Timer Reset Periodic, high-priority task
Background Selftests As-time-available, low-priority task
M68010 Exception Handler On-demand procedure
Reconfigure On-demand procedure

Log Error On-demand procedure

Log Reconfiguration On-demand procedure

Log Non-Congruent Event On-demand procedure

CHANNEL RECOVERY

Transient FDIR Periodic, high-priority task
Lost Soul Sync On-demand high-priority task
Restart On-demand procedure
Reconfigure On-demand procedure

Log Reconfiguration On-demand procedure

Log Non-Congruent Event On-demand procedure

Figure 17. Summary of FDIR Tasks and Procedures
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4.1.1 Fault Detection and Identification

Fault detection mechanisms are implemented in both hardware and software, while the
identification mechanisms are implemented solely in software. Instruction-level synch-
ronization together with bit-for-bit comparison of redundant data makes it possible to
isolate a fault to a single channel.

There are four main processes which detect and identify faults:

e aperiodic, high-priority task (Fast FDIR) which checks for failure of a
companion, an unsynchronized channel, a failure in the data exchange
hardware, and failure of a fault-tolerant clock;

* aperiodic, high-priority task (Watchdog Timer Reset) which taps the watchdog
timer within the given time bounds sc that the timer does not overrun and cause
a hardware reset;

* alow-priority task (Background Selftests) which does tests to uncover latent
faults in memory, voting circuitry and error latches, and the real-time clock;

» aprocedure for handling M68010 hardware exceptions such as an illegal
instruction or addressing error.

After a channel is identified as being faulty, the GPC must be reconfigured so that the
faulty channel does not affect GPC operation. The errors generated by the channel must be
masked and its outputs must be stopped. This is done by a procedure (RECONFIGURE)
which:

* sets a software variable which identifies the channel as failed;

» disengages the monitor interlock so that outputs from the faulty channel are
disabled.

* logs the fault and the reconfiguration for later examination by an operator.

4.1.1.1 FastFDIR

Fast FDIR is one of four tasks which detect and isolate errors. It is a high-priority task
which runs every 40 ms. It checks for: :

» afailed companion processor

« an unsynchronized channel
 afailure detected but not reconfigured around by the selftests
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¢ adata exchange failure, i.c., either failure of the interstage or of any link in the
data exchange hardware

o failure of a fault-tolerant clock.

* amissing companion processor

Error detection is done in the order given above. If any particular test uncovers a failure,
the remaining tests are not done during that iteration of Fast FDIR. When an error is
detected, the error is logged, the GPC is reconfigured to exclude the faulty channel, and the
reconfiguration is logged.

Fai mpanion

When one of the two processors in a channel (CP or IOP) detects a failure, the companion
processor is notified. The companion processors must fail their member in the same
channel, even though it may be fault free. This ensures that the CPs and IOPs always have
the same configuration.

nsvnchroniz hannel

An unsynchronized channel is detected by means of two tests: (1) the inconsistent PC
check and (2) the presence test.

The inconsistent PC check is designed to handle the case where processors are out of sync
but are brought back together by an interrupt, which thus masks the out of sync condition.
Each time an interprocessor or timer interrupt occurs, a consensus value for the PC at the
time of the interrupt is obtained by doing a FROM_ALL data exchange. Each channel then
compares its own PC to the consensus value; a channel with a different value sets a flag
which is subsequently checked by Fast. Checking the flag causes the inconsistent channel
to diverge so that the two synchronized channels see it as missing when they do the
presence test.

The presence test detects an unsynchronized channel by sending a unique pattern from each
channel through the data exchange. If the result read from the data exchange receiver is not
the expected pattern, the channel originating the exchange is judged not present and
therefore out of sync.

Selftest Error

The background selftests attempt to detect latent errors, that is, errors which currently exist
but have not yet caused data exchange errors or a channel to become unsynchronized.
These tests are discussed fully in a later section. The selftest task does not reconfigure
‘when it detects an error, however. It merely passes the pertinent information to the Fast
FDIR task, which does the actual reconfiguration.
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D xch Fai

Failures in the data exchange are detected by analyzing the error latches set by the data
exchange hardware. These latches are set during a data exchange if a miscompare is
detected during the voting of data received from the interstages. The latches identify the
type of exchange and the channel at fault when the miscompare occurred. A failure can be
isolated either to (1) an interstage (including the transmitter-to-interstage link) , or (2) any
link other than the transmitter-interstage link (i.e., transmitter-transmitter links and
interstage-receiver links).

Fault-Tol k Fai

Failures in the fault-tolerant clocks are detected by analyzing the error latches set by the
clock hardware. There are two sets of error latches: one which is set when the clock
interstage detects faulty input from a clock element, and a second which is set when a clock
element detects faulty input from a clock interstage. Failure of a fault-tolerant clock is
merely logged; it does not cause the channel to be considered failed.

Missin mpanion

A processor which has restarted because of a watchdog timer-caused reset or because of
hardware or software exceptions needs to so notify its companion so that the companion
may also restart. One way for such notification to occur is to have each processor
periodically notify its companion that it is still running and at the same time check that its
companion is still running. If a processor finds its companion missing, it assumes its
companion has restarted and therefore does a software restart itself.

4.1.1.2 Watchdog Timer Reset

The second fault detection process is the Watchdog Timer Reset process. This process
does not perform fault detection functions in quite the same way, however, as other
processes in this category, i.e., by responding to a specific fault. Rather, the failure of this
task to execute at its scheduled period would indicate a critical fault in either hardware or
software and would cause a hardware reset.

The watchdog timer is a hardware component whose purpose is to prevent infinite software
loops or hardware faults from hanging up the system. After it has been started, the
watchdog must be cleared periodically within a set time window; if it is not cleared within
this window (i.e., either too early or too late) a hardware reset occurs. On the AIPS FTP
this window is 60-120 milliseconds plus or minus 10%. The Watchdog Timer Reset
process performs the function of clearing the watchdog timer.
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4.1.1.3 Background Self Test

The third fault detection task is the Selftest task, a low-priority task which runs when the
GPC has no other important work to do. Its job is to uncover latent faults, that is, faults
which exist but which have not yet caused data exchange errors or desynchronization of a
channel. This task does tests on four hardware elements:

e Memory

e Voter circuitry and error latches
*  Monitor interlock

e Real-time clock

The memory tests include the following:

e PROM sum check. This test verifies that all channels have identical values in
ROM by doing a sum check.

e RAM scrub. This test checks each memory location to ensure that the values
are identical among the three channels.

* RAM pattern test. This test checks the functionality of each location. It tests
each bit's ability to hold both a 1 and a 0 by writing specific patterns to each
word.

e Shared memory scrub. This test checks each memory location in shared
memory to ensure that the values are identical among the three channels.

Voter circuitry and error latches are tested by writing normal and faulty patterns of data to
the voters. After these votes, both the resulting values and the error latches are checked to
confirm that all errors were properly latched and corrected.

The monitor interlock is tested by reading the current value and ensuring that it is identical
among the three channels.

The real-time clock is tested by reading the current value and ensuring that it is identical
among the three channels.

4.1.1.4 Hardware Exception Handler

The exception handler is the fourth fault detection process. It is invoked when there is a
hardware exception such as an illegal instruction or an address error. The type of exception
and relevant information such as the program counter and selected registers are logged in
the non-congruent log. A presence test is done to determine if the exception was caused by
a hardware error or a generic software error. If the results of the presence test show that a
processor is alone, this implies a hardware error. If the presence test shows that a proces-
sor is with others, this implies a generic software error. In either case, the exception and
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the results of the presence tests are logged in the non-congruent log, and the processor(s)
are restarted.

4.1.2 Channel Recovery

As mentioned earlier, the reliability of the FTP is greatly enhanced if channels previously
diagnosed as faulty but currently operating without faults can be brought back into the FTP
configuration. How a channel is recovered depends on the type of failure, i.e., whether or
not the fault has caused the channel to fall out of sync. A failure in the data exchange
hardware does not desynchronize a channel, while other kinds of failures do. A GPC has
recovered from a fault, therefore, when

. the failed channel can be resynchronized, or
. the failed channel no longer shows errors in the data exchange hardware.

When a channel has been recovered, the GPC must be reconfigured so that the recovered
channel participates in the GPC operation and another fault can be tolerated.

There are three main processes involved in channel recovery. Transient FDIR
distinguishes between transient and hard failures when a channel recovery is being
attempted in order to balance competing system needs. Lost Soul Sync is responsible for
resynchronizing an unsynchronized channel, i.e., synchronizing it to the instruction level
and making its internal state the same as the duplex processors. Finally, the Restart
process is invoked when a second fault or a common-mode failure occurs. These faults
result in a fail-safe condition, which the AIPS FTP responds to with a system restart.

4.1.2.1 Transient FDIR

When recovering a failed channel, system resources are used most efficiently if a
distinction is made between transient failures and hard failures. Transient failures are
assumed to be caused by some temporary environmental condition (e.g., a power surge).
By definition, they are expected to disappear with time. Hard failures, on the other hand,
are caused by breakdowns of the FTP hardware that must be physically repaired.

The attempt to recover a failed channel could be made automatically (i.e., the software
periodically tests the channel to determine its current state) or it could be made solely under
operator direction (i.e., the operator enters a command indicating the channel has been
repaired). The first method satisfies the need to recover the channel as quickly as possible
while the second method satisfies the need to not waste system resources by repeatedly
testing a channel with a hard failure. Transient FDIR strikes a balance between these two
needs by initially assuming that any particular fault is transient (it has been observed that
50 to 80 percent of all faults in computer systems are transient) and automatically
attempting a recovery. As time passes without the channel being recovered, it becomes

52



more likely that the fault is a hard failure rather than a transient, and Transient FDIR makes
the recovery attempt less often. After a certain period it can reasonably be assumed that the
failure is a hard failure and Transient FDIR either waits for an operator signal or tests the
channel only at some infrequent interval such as its mean time to repair.

Additionally, it has been noted that hard failures tend to manifest themselves sporadically.
A channel may be recovered according to the above criteria, but may immediately fail again.
Transient FDIR attempts to prevent this situation by regarding a recovered channel as
recovered only on a trial basis. If the channel passes its trial period without further errors,
it is regarded as fully recovered and can be added back into the FTP configuration.
Intermittent failures which occur at infrequent intervals (i.e., after the trial period has
passed) will not be handled by this scheme, however, but will be regarded as new faults.

This distinction between transient and hard failures thus defines the two functions of
Transient FDIR:

. It decides when it is appropriate to attempt to recover a failed channel.
. Once a channel is seen as fault-free, it monitors its health for a brief probation
period before declaring it fully recovered.

ttempting Channel Recov

The initial response to all detected faults is to mask the fault and disable all outputs from the
faulty channel. Thereafter, the status of the failed channel is periodically "sampled"” to
determine if the fault is transient. Immediately after a failure, a recovery attempt is made
and a sampling of the channels health is taken. If the attempt fails (i.e., the unsynchronized
channel cannot be found or the data exchange latches still show errors), the time between
successive attempts is doubled, until Mean Time To Repair (MTTR) is reached. This time
delay between successive recovery tries and the samplings of the status of a failed channel
is a function of state variables representing the "health” of the channel. The "“health”
variable, in turn, is a function of the error history of the particular channel with many recent
fault observations for the channel indicating "poor" health and declining fault observations
representing "good" health. The time between recovery attempts is doubled following each
status sampling which indicates the fault is still present. This sampling sequence is
repeated until either the fault status changes to indicated the fault is no longer present or an
upper threshold on the retry time is crossed at which point the fault is deemed "hard".
From this point on recovery will be attempted only when another MTTR period has passed
or after an operator signals that the channel has been repaired.

Probation Monitoring

After a channel has been recovered, it must undergo a trial period before being declared
fully recovered and functional. The length of this period is a function of the "health" of the
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channel and depends on the number and type of faults. A channel with multiple faults in
quick succession (i.e., the channel fails before it has passed its trial period) will have a
longer trial period than if it only had a single fault. Faults that desynchronize a channel
require a longer trial period than data exchange errors.

Additional Considerations
The work of Transient is complicated by several factors.
(1) AIPS is a bi-processor system. This has two ramifications.

(a) The CP and IOP must maintain identical configurations within the skew of one Fast
cycle. Yet because of performance requirements, Transient runs only 25% as often as
Fast. Identical configurations must be maintained because otherwise one side might see a
failure as a single fault while the other side wouid see it as a double fault and go into fail-
safe mode.

(b) When to execute the Channel Sync routine must be very closely coordinated between
the CP and IOP so that neither side wastes time waiting at the handshake.

(2) IOS dual-ported memory and registers must be re-initialized after a recovery. Because
of performance requirements and its low criticality, this process should not run
uninterrupted and should not prevent Transient from making the other checks it must make
during its periodic execution.

These factors led to the following design of the Transient FDIR process.

» All decision-making in the task is done by the CP. The CP then communicates
with the IOP via shared memory as to what to do, specifically whether to
schedule the Lost Soul Sync task or the IOSS Restore task (see below).

» The Channel Sync routine is run as part of a separate task (Lost Soul Sync) and
is scheduled for an absolute time, which is calculated so that the IOP and CP
spend minimal time waiting for each other. The Channel Sync routine sets a
flag for Transient indicating whether or not it picked up the faulty channel.

» The IOS re-initialization is run as a separate task. The CP tells the IOP when to
start it; the IOP signals the CP when the task is complete. Provision is made for
the case where a second error occurs before the I0S re-initialization is finished,
since there is no way to stop a task in midstream.

» After a channel has passed its probation period and reinitialized the 10S, it is
permanently enabled by Fast FDIR rather than Transient. CP Transient, which
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makes the decision to reenable, passes the necessary information to CP Fast,
which in turn passes it to IOP Fast.

4.1.2.2 Lost Soul Sync

Lost Soul Sync is the process of attempting to resynchronize a previously failed channel (a
"lost soul") and, if successful, bringing it to the same state as the two good channels. This
process has two main steps:

» resynchronizing the channel, i.e., synchronizing it to the instruction level with
the other two channels, and

 aligning the channel, i.e., making its volatile memory and registers the same as
those of the other two channels. This ensures that after the code execution is
synchronized, only a fault could cause a channel to lose synchronization, rather
than, for example, a memory location that contained an incorrect value.

This task is an on-demand task scheduled by Transient FDIR when Transient deems it
appropriate to attempt recovery of a failed channel. Because of the handshaking required
between the CP and IOP, the task is scheduled to run at an absolute time. The following
describes the two main steps of Lost Soul Sync.

The resynchronization function is performed in a loop where single-source exchanges are
initiated with predetermined, constant data patterns being sourced. The exchanges executed
in one iteration of the loop include one single-source exchange from each FTP channel.
Divergent channels must be executing this loop at the same time in order to become
synchronized. As a given channel performs the data exchanges within the sync loop, a
comparison is made of the data received for a given exchange against the data expected for
a successful exchange. A match indicates that the given channel is operating in
synchronism with the channel at the source of the exchange; a mismatch indicates a lack of
synchronism. Thus after every iteration a channel knows whether it is alone or
synchronized and with whom. A channel remains in this loop as long as it is alone;
channels which are together leave the loop either immediately (if they have become a
triplex) or after a specified number of iterations (if they are a duplex).

Obviously, repetitive executions of the exact same loop of instructions by two
unsynchronzed channels will never bring them to the point of synchronous operation.
After each iteration, the two channels must delay their execution of the next iteration of the
loop by different amounts of time in an attempt to phase shift into sync with one another.
The length of the delay depends on the configuration of the channel(s), i.e., each channel
or combination of channels delays for a different amount of time. All other channels in this
configuration will delay the same amount and thereby remain synchronized with each other.
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Since each channel of the FTP may have multiple processors, a coordination of processor
activity within each channel is required before and during the resynchronization process.
Only one of the processors in each FTP channel executes the sync loop code described
above. Before doing so, the processors within each channel handshake with one another to
signal their readiness to operate together with their counterparts in other channels. This
handshake is implemented using shared memory. The processors not executing the sync
loop described above must suspend operation until the sync loop is exited and the result of
the synch attempt is known. This suspension must be implemented such that on
resumption of processor operation following a successful synch attempt, not only will the
set of inter-channel processors which actually executed the synch code be in synch, but
their companion (intra-channel) processors will also execute in synch with their inter-
channel counterparts. This is accomplished by locking the shared bus; a reference to any
component on the shared bus (in particular, shared memory) results in a suspended bus
cycle which completes only when the shared bus is unlocked by the locking processor.
Thus those processors not executing the actual synch code will be suspended on a shared
memory access with the processors executing the synch code clearing the lock only after
completion of the synch attempt. The result of the synch attempt is passed to the
companion processor via shared memory.

It is imperative that once synchronous operation between channels is established, no
conditional changes in program flow are made based upon data not congruent across
channels. Immediately following a synch attempt in which an a lone channel is added to
the configuration, all hardware elements must be made congruent (i.e., 'aligned’). Any
hardware element for which an incongruent state could cause a desynchronizing of
channels must be aligned. Each processor within the channel must align its own local
hardware resources. However, only one processor in a channel needs to align the shared
resources within the channel (e.g., shared memory, real-time clock).

The same resynchronization and alignment processes are used for synchronizing three
divergent channels at system startup.
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4.1.2.3 System Restart

Certain faults which are detected may be of such a magnitude that they are unsustainable
and may be recovered from only by restarting the system. Examples of such faults are a
second fault detected by Fast FDIR and common-mode faults. The restart process
accomplishes the system restart without requiring operator intervention.

4.1.3 Reconfiguration

The reconfiguration routine is called by the fault detection and identification tasks when a
fault has been identified and by the recovery tasks when a channel has been repaired.
During a reconfiguration a channel is either removed from the configuration because it was
found to be faulty, or added in because the fault no longer exists.

When a channel is identified as being faulty, the errors generated by that channel must be
masked and its outputs must be stopped. This is done by (1) setting a software variable
which identifies the channel as having failed, and (2) disengaging the monitor interlock so
the channel's outputs are disabled.

When a channel has recovered from a failure, its inputs must be accepted and its outputs
enabled. This is done by the reverse process, i.e., (1) setting the software variable to say
that the channel is now functional, and (2) engaging the monitor interlock so the channel's
outputs are enabled.

When a channel has recovered from a failure, it is considered part of the configuration only
by FDIR until its probation period has expired. This is done by setting a software variable
to say that the channel is enabled on a trial basis.

4.1.4 Logging

Failures and reconfigurations are recorded in logs which may then be examined by a
system operator or passed to the system FDIR manager. Certain failures and recovery
actions are also entered in the non-congruent log, which contains unique information for
each channel and is preserved by a software restart. The logs may be displayed by entering
appropriate commands on a CRT or Macintosh computer.
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4.2  GPC Fault Detection, Identification and Reconfiguration Software Specifications

4.2.1 Fault Detection and Identification Process Descriptions

Fault Detection
and
Identification

Background
( Fast FDIR ) ( Selftests )

Watchdog ) M68010 Exccption)

Timer Reset Handler

Figure 19. Fault Detection and Identification Functions
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4.2.1.1 FastFDI

IOP_FDIR_AND_TIME

[CP_FDIR_AND TIME

Clock_Latc_hcs

)

Record
Changes

( Fast )
Process Anal
Gompanion Comman La
Check _
( Present ) (Companion Present)
Analyze_
Data_Latches

Analyze Complex . Soft .
nterstage Failure Error Analysis Error Analysis

Figure 20. Fast FDI Processes
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4.2.1.1.1 Process Name: CP_FDIR_AND_TIME
IOP_FDIR_AND TIME

Inputs:

e None
Outputs:

e None
Description:

These tasks implement the periodic FDIR functions and the Time Manager function for the
CP and IOP, respectively. Although Fast FDIR, Transient FDIR, and the Time Manager
are tasks, conceptually speaking, they were not actually implemented as separate Ada
tasks. Rather, only one task, a combined FDIR_AND_TIME task, was implemented.
This task is scheduled to run at the frequency of the highest priority function, Fast FDIR.
It executes Fast FDIR every time it is scheduled and then uses a counter to maintain the
proper periodicity of the other functions, i.e., Transient FDIR is executed only four times a
second and the Time Manager only once. The motivation for the combined
FDIR_AND_TIME task was to save the overhead time required for switching between
separate tasks, especially since under no-fault conditions the time required for Transient
FDIR is only a few microseconds. Interrupts are disabled while this task is executing.

4.2.1.1.2 Process Name: FAST

Inputs:
¢ Companion present flag from companion processor
¢ Enable command from companion (if IOP) or from Transient FDIR (if CP)
e Disable command from companion
¢ Disable command from selftest task
Outputs:

» Disable command to companion processor
e Enable command to companion (if CP)
e Companion present flag

Description:

This is the main procedure of the Fast FDIR process, and is called by the
FDIR_AND_TIME task every 40ms. This procedure checks for the following faults:

 failure of a companion processor, i.e., a disable command from the companion
e achannel out of sync, i.e., either
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- an inconsistent PC, which indicates to a lone channel that it was out of
Sync at a timer or interprocessor interrupt, or
- incorrect results from the presence test
 a fault detected but not reconfigured around by the selftests
» adata exchange error, i.e., either failure of the interstage or of any link in the
data exchange hardware
» failure of a fault-tolerant clock
» absence of a companion processor, i.e., the companion has ceased execution

In addition, the procedure checks for an enable command, which indicates that a previously
failed channel has been recovered.

The above list indicates the priority of the tests. Once a fault is detected, the remaining
tests are bypassed during that execution of the procedure, because they would fail anyway.
For example, if a processor is out of sync, that would naturally cause the data exchange
error latches to be set.

After an error is detected, it is logged. The GPC is reconfigured to exclude the faulty
channel, and the reconfiguration is logged. A disable command is written in shared
memory to notify the companion processors of the failure. For the appropriate types of
failures (i.e., all errors except data exchange errors), the faulty channel now goes to the
Channel Sync procedure . If a channel determines that it is alone and that the GPC has
degraded from a duplex to a simplex (i.e., a second fault has occurred), it goes to a
FAIL_SAFE procedure.

An exception to this procedure occurs when a fault-tolerant clock failure is detected. This
failure is not reconfigured around; it is merely logged.

The last step in the Fast FDIR procedure is to check for a Channel Enable command. The
CP gets this command from Transient FDIR; if there is one it reconfigures, logs the
reconfiguration and notifies the IOP by writing in shared memory. The IOP gets the
Channel Enable command from the CP; if there is one it reconfigures and logs the
reconfiguration.

Implementation Notes

The shared bus is locked during any access to shared memory (i.e., reading or writing the
inter-processor commands). This is done to prevent these commands from simultaneous
accesses. This implementation was selected over two alternative approaches:

1) using the shared read/write services of the Ada runtime system, and
2) associating a lock variable with each shared memory command so that a specific
command could be locked rather than the shared bus.
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The first alternative was rejected because the runtime system puts a task to sleep when a
desired object is not available, and this is not an acceptable consequence for Fast FDIR.
The second alternative was rejected because, while the amount of time that the shared bus
was locked decreased, the amount of time to execute Fast FDIR increased. This thus
became a tradeoff between taking time from the local processor and taking it from the
companion processor. Locking the shared bus was then chosen because it is a simpler and
more direct implementation.

Similar reasoning was used in the decision to use the shared data exchange, rather than the
dedicated, for the presence test. Using the shared data exchange means the test can be very
simple, but it required locking the shared bus. Using the dedicated data exchange does not
require locking the shared bus but the test is more complex and takes longer. The shared
exchange implementation was chosen because of its simplicity.

Finally, the shared bus is locked for the following sequence of tests:

¢ Checking for a disable command from the companion
¢ Checking for an inconsistent PC
» Presence test
- Doing the data exchanges
- Writing disable command to companion if error detected

This is done to ensure that when a processor falls out of sync, the error will be reported in
a predictable way. Often a processor drops out of sync because its companion dropped
out first. Locking the shared bus during the above sequence ensures that one side (and
only one side) will report a presence failure while the other side will report a companion
€rTor.

4.2.1.1.3 Process Name: PROCESS_COMPANION_COMMAND

Inputs:
* Reconfig_cmd record

Outputs:
* Entry in error log
e Entry in FAST_INFO array

Description:

This procedure disables a channel when one set of processors (CP or IOP) has been
notified that a companion has failed. The GPC is reconfigured to eliminate the faulty
channel, and the error and the reconfiguration are logged. For errors other than data
exchange errors, the companion to the failed processor drops out of sync at this point and
goes to the Channel Sync procedure.

62



4.2.1.1.4 Process Name: PRESENT
Inputs:

e None

Outputs:

¢ Integer indicating channels in sync
Description:

This routine performs the presence test, i.e., it checks for missing (unsynchronized)
channels. It does this by sending a unique pattern from each channel through the data
exchange. If the result read after a particular exchange is not the expected pattern, the
channel originating the exchange is judged to be not present and therefore out of sync.

As mentioned in the Implementation Notes for the Fast process, the patterns exchanged are
long words and are transmitted using the shared data exchange. When a word is
exchanged using the dedicated exchange, the data exchange hardware is sufficiently slow
such that any particular word will be in the receiver for more than one FTC cycle. This
would allow a channel only slightly behind to see the expected word in the receiver and
incorrectly conclude that it is in sync. Successive exchanges of long words, however,
result in the long word being in the receiver for only one FTC cycle, so a tardy channel
could not conclude that it was in sync.

Interrupts are disabled and the shared bus is locked before this routine is called.
4.2.1.1.5 Process Name: CHECK_COMPANION_PRESENT

Inputs:
¢ Shared memory signal from companion

Outputs:

¢ Shared memory signal to companion
Description:

A processor which has reset because of the watchdog timer or because of hardware or
software exceptions has no way to notify its companion of this fact. If one set of
processors (i.e., CP or IOP) in all three channels reset in this way, they will never restart
because they will all be waiting in the synchronization routine to handshake with their
companions, who know nothing of their restart.

One solution to this problem is to have each processor periodically notify its companion
that it is still running by writing a predefined value in shared memory. In addition to
writing its own value, the processor determines if the companion is still executing by
checking for the companion's value. The companion is allowed to miss one cycle before
the processor assumes it has reset and does a reset itself.
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4.2.1.1.6 Process Name: ANALYZE DATA _LATCHES

Inputs:

e Data exchange error latches
Outputs:

e None
Description:

This routine analyzes the error latches set by the data exchange hardware and identifies the
particular element of the hardware which has failed (i.e., the specific interstage or link).

Each channel gets its own copy of the four error latches (one for each type of exchange)
and combines them into one word. This word is then sent to the other two channels. All
three channels do a software vote to get a consensus value of the three individual latches.

Only the CP checks for link and interstage failures, because these failures will be
manifested in both processors. Both the CP and IOP check for "soft" errors (i.e., non-
congruent data in a FROM_ALL exchange), since this type of error would be unique to the
particular processor. Each type of failure causes the error latches to be set in a known way,
which allows the error to be identified unambiguously. Figure 21 summarizes the types of
failures and the error latch settings for each type.

If only two channels are up, an error cannot be unambiguously identified. All that can be
done in this case is to check for a second failure by ignoring any errors caused by the
failed channel and then seeing if any other bits in the latches are set. To ignore errors
caused by a failed channel X, three things must be masked:

* any latches set during a FROM_X exchange,
» the bits representing channel X in the other types of exchanges.
» the exchanged copy of channel X's error latches.

A second failure results in a fail-safe condition in which the system restarts.

After a fault has been identified, the LOG_AND_RECONFIG subroutine is called to create
the reconfiguration record and error log entry which will be used by the main Fast FDIR
procedure.
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Figure 21. Data Exchange Error Latch Settings
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4.2.1.1.7 Process Name: ANALYZE INTERSTAGE FAILURE

Inputs:

e Voted value of error latches from the three channels
Outputs:

¢ None
Description:

This routine checks for a hard interstage failure. When an interstage has failed, all channels
will show an error in that channel for all types of exchanges. This is illustrated in Figure
22. A failure in the link between a channel's transmitter and its interstage will cause the
error latches to be set in the same way. The failure of this link and the failure of an
interstage are indistinguishable.

After an interstage failure has been identified, the LOG_AND_RECONFIG subroutine is

called to create the reconfiguration record and error log entry which will be used by the
main fast FDIR procedure.
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4.2.1.1.8 Process Name: COMPLEX_ERROR_ANALYSIS

Inputs:

¢ Local and voted values of error latches from the three channels
Outputs:

e None
Description:

This subroutine checks for three types of link failures:

 afailure in the link between an interstage and any one channel's receiver;
 a bidirectional failure in the link between two channels' transmitters;
e aone-way failure in the link between two channels' transmitters.

These failures are illustrated in the following figures.

A failure in the link between an interstage and any one channel's receiver will cause error
latches to be set only on the receiving channel. This channel will show errors in the
channel originating the faulty link for all types of exchanges.

A bidirectional failure in the link between two channels' transmitters will set the same error
latches on all three channels. All exchanges from the first channel will show an error in the
second channel, and all exchanges from the second channel will show an error in the first
channel.

A one-way failure in the link between two channels’ transmitters will set the same error
latches on all three channels. A failure from Channel 1 to Channel 2 will show errors in
Channel 2 on From_Channel_1 exchanges.

After a link failure has been identified, the LOG_AND_RECONFIG subroutine is called to

create the reconfiguration record and error log entry which will be used by the main Fast
FDIR procedure.
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Figure 23, Latch Settings For Interstage - Receiver Link Failure
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4.2.1.1.9 Process Name: SOFT_ERROR_ANALYSIS

Inputs:

e Voted value of error latches from the three channels
Outputs:

e None
Description:

This subroutine checks for a "soft" error, i.e., non-congruent data sent during a
FROM_ALL exchange. This type of error will set the same error latches on all three
channels. The channel sending the non-congruent data will be identified as faulty on a
FROM_ALL exchange (refer to the following figure).

After a "soft" error has been identified, the LOG_AND_RECONFIG subroutine is called to

create the reconfiguration record and error log entry which will be used by the main Fast
FDIR routine.
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4.2.1.1.10  ProcessName: ANALYZE_CLOCK LATCHES

Inputs:
e Fault-tolerant clock error latches
e Fault-tolerant clock interstage error latches

Outputs:
e None
Description:

This routine analyzes the error latches set by the fault-tolerant clock hardware and identifies
which clock element or clock interstage has failed.

Each channel gets its own copy of the two error latches (one from the interstage, one from
the clock element) and combines them into one word. This word is then sent to the other
two channels. All three channels do a software vote to get a consensus value of the three
individual latches.

Each set of latches identifies errors about the other clock unit. Thus, the interstage latches
identify faulty inputs from the clock elements. If Channel A's clock element fails, the
interstage latches of all channels will show a fault in A. Conversely, the clock element
latches identify faulty inputs from the interstage; if Channel A;'s interstage fails, the clock
element latches of all channels will show a faultin A. These failures are illustrated in the
following diagram,

This routine checks the current value of the latches against their previous value. If the

value has changed, the routine determines whether a clock has failed or recovered, and
makes an appropriate entry in the error log or the reconfiguration log.
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4.2.1.1.11  Process Name: RECORD_CHANGES

Inputs:
* Voted value of clock and clock interstage latches from the three channels
e Previous voted value

Outputs:

* Entry in error log or reconfiguration log
Description:

This subroutine examines differences between the current and previous values of the FTC
latches and determines that either a clock has failed or recovered. If a clock has failed, an
entry is made in the error log; if a clock has recovered an entry is made in the
reconfiguration log. Differences between the current and previous values of the FTC
interstage latches are also examined and recorded.
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4.2.1.2 Watchdog Timer Reset

The watchdog timer is a hardware component whose purpose is to prevent infinite software
loops or hardware faults from hanging up the system. After it has been started, the
watchdog must be cleared periodically within a set time window; if it is not cleared within
this window (i.e., either too early or too late) a hardware reset occurs. On the AIPS FTP
this window is 60-120 milliseconds plus or minus 10%.

Two methods are required to reset the watchdog: 1) a periodic task which regularly clears
the watchdog during normal system operation, and 2) a special procedure which is used
during Lost Soul Sync when interrupts are disabled and the periodic task cannot run.
These procedures are described on the following pages.

CP_FDIR_AND_TIME TImerl
IOP_FDIR_AND_TIME Interrupt

Normal_Watchdog .
( Reset ) (Tlmerl_Handler )
Handle
Timer1_Rupt

Figure 29. Watchdog Timer Reset Processes
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4.2.1.2.1 Process Name: NORMAL WATCHDOG_RESET

e Channel_Sync_State indicator
e Alterate_Iteration indicator

e Channel_Sync_State indicator
e Alternate_Iteration indicator

Description:

This routine is called by the highest priority task, the FDIR_AND_TIME task, to
periodically clear the watchdog timer. This routine assumes that it is being called on every
iteration of this task (i.e., every 40 ms) and that by clearing the timer on every other
iteration it will be satisfying the timer requirements (refer to previous page). Clearing the
watchdog in this way guarantees:

1) that timer interrupts are enabled;

2) that the runtime system is not in an infinite loop with interrupts off;

3) that the FDIR_AND_TIME task is being scheduled at its correct interval;

4) that the FDIR_AND_TIME task is not in an infinite loop;

5) that a processor which hangs waiting for a DTACK because it has referenced a
non-existent address will be reset.

Special provision has been made for clearing the watchdog timer while the Channel_Sync
routine is running, because Channel_Sync cannot be interrupted and the amount of memory
to be aligned when a lone channel is being picked up is so great that it cannot possibly be
completed within 120 milliseconds. During Channel_Sync, one of the unused interval
timers is used to periodically cause an interrupt, at which time the watchdog is cleared.
After Channel_Sync is completed, the job of clearing the watchdog reverts to the periodic
routine, Normal_Watchdog_Reset. However, its alternate iteration test is now invalid; for
example, it may be the alternate iteration but the watchdog may have been cleared only a
few milliseconds ago while Channel_Sync was running. Thus, immediately after
Channel_Sync has completed, this routine must use a time comparison to determine when it
should clear the watchdog. After the watchdog has been reset once using this method, the
alternate iteration method becomes appropriate again.

The alternate iteration method is the preferred method because this guarantees that the

FDIR_AND_TIME task is being scheduled at its correct interval, whereas always using a
time comparison to clear the watchdog would not guarantee this.
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4.2.1.2.2 Process Name: Timerl Handler
Handle_Timer1_Rupt

Inputs:
e Channel_Sync_State indicator

Outputs:
e Time watchdog last reset
e New value in timer

Description:

As mentioned in the process description for Normal_Watchdog_Reset, under normal
conditions the watchdog timer can be cleared by a periodic task. Special provision must be
made, however, for clearing the watchdog while the Channel_Sync routine is running,
because Channel_Sync cannot be interrupted and the amount of memory to be aligned
when a lone channel is being picked up is so great that it cannot possibly be completed
within 120 milliseconds. During Channel_Sync, one of the unused interval timers is used
to periodically cause an interrupt, at which time the watchdog is cleared.

These routines are invoked when the timer interrupt occurs. They clear the watchdog and
set the timer to go off again. After Channel_Sync is complete, the job of clearing the
watchdog reverts to the periodic procedure, and so an interrupt which occurs after
Channel_Sync is finished is ignored and the timer is not reset.

Two routines are required here because the interrupt handler must conclude with an RTE
instruction and must therefore be written in assembler, while the actual work of checking
flags and clearing the watchdog is more conveniently done in Ada. Thus the
Timer1_Handler routine is an outer shell which ends with an RTE instruction, while the
Handle_Timer1_Rupt routine does the actual work required.
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4.2.1.3 Background Selftests

CP_MAIN_PROG
IOP_MAIN_PROG

Background
Selftests

I System_Timer)
( Voter Test ) ( ROM Sum ) (ShMem ScrulD Test

|
Test One
—
SM Word

( Latch Test ) (RaMSerub ) (RAM Pattern )
( Test Word )
Generate Generane Scrub with Pattern
DX Error Multiple Error Word
‘ Test Location ’

Figure 30. Background Selftest Processes

81



4.2.1.3.1 Process Name: BACKGROUND_SELFTESTS

Inputs:

e None
Outputs:

* None
Description:

This is the main procedure of the selftest process and is run as part of the main program
(CP_MAIN_PROG or IOP_MAIN_PROG). It calls appropriate procedures to run the
following tests:

. Data exchange voter test

. Data exchange error latch test
. ROM sum check

. RAM scrub

. Shared memory scrub

. Pattern test on offcard RAM
. Pattern test on oncard RAM
. System timer test

When an error is detected, the reconfiguration is not done immediately, but Fast FDIR is
signaled that a reconfiguration is required and the necessary information is passed in a
global variable. Further testing is then delayed until FAST has done the reconfiguration.
Testing resumes from the point at which the error was detected.

This procedure is also executed at system startup when the entire suite of selftests is run
without interruption before any other tasks are started. In the laboratory testing

environment, this startup execution is optional and is controlled by a flag set by the
operator in RAM.
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4.2.1.3.2 Process Name: VOTER_TEST

Inputs:
e Current configuration

Outputs:

» Patterns to be used in each test
Description:

This selftest exercises the voting circuitry and error latches in the data exchange hardware.
It verifies that when the voters receive non source-congruent data they produce a correct
(majority) result and that the error latches are correctly set to indicate the dissenting
channel.

The test is done by calling a subroutine which does a FROM_ALL exchange in which one
channel transmits a pattern different from the other two channels. After the exchange, the
called subroutine verifies that the correct result is read by all channels and that all channels
correctly identify the dissenting channel on a FROM_ALL exchange. (Refer to following
section on TEST_ONE_VOTER_PAL for more details.)

In order to thoroughly test the voters, the basic test must be repeated with a series of
patterns. The data exchange mechanism acts on a 16-bit word. The voters, however,
consist of eight 2-bit wide PALs, i.e., the 16-bit word is fed into the voters two bits at a
time. This means that it is not necessary to test every possible combination of the bits in a
16-bit word. Rather, the bits can be tested in 2-bit units, i.e., first bits 0-1, then bits 2-3,
then bits 4-5, etc. The bits being tested must exercise every possible combination of bits (4
for a 2-bit unit), but the value of the rest of the word is irrelevant.

Thus, a test of any particular 2-bit unit consists of the 16 combinations of patterns shown
in the following table.
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Concurring Dissenting
Channels Channels

00 00

01 00

10 00

11 00

Figure 31. Test on a Two-Bit Unit

This test is repeated eight times, once for each 2-bit unit in the 16-bit word. Since there are
three channels, the entire sequence described above is repeated three times, with each
channel having a turn at being the dissenter. This routine generates the concurring and
dissenting patterns which are used for each test.

The voter test is not started unless all three channels are in sync. If the

TEST_ONE_VOTER_PAL subroutine reports that an error was detected, the voter test is
discontinued and the next selftest starts execution.
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4.2.1.3.3 Process Name: TEST ONE_VOTER_PAL

Inputs:

o Data exchange receiver values and error latches

Outputs:

* Reconfig_cmd record
Description:

This routine does the actual data exchange required to test a particular PAL in the data
exchange voters and analyzes the results. This exchange is a FROM_ALL exchange in
which one channel transmits a pattern different from the other two channels. After the
exchange the result read back by all channels should be the pattern sent by the two
concurring channels, and all error latches should say that there was an error in the
dissenting channel on a FROM_ALL exchange. If these conditions are not met, the test is
considered to have failed.

For each FROM_ALL exchange done during the test, a "good" pattern (transmitted by the
concurring channels) and a "bad" pattern (transmitted by the dissenting channel) are
generated. The channels send out the different patterns by using their id as an index to an
array containing the address of the desired pattern. Three different arrays, corresponding
to who is the dissenting channel at the time, are used. Thus when A is the dissenter,
addresses are chosen from a table where

table (1) = Abad_pattern -- Ch A uses this address
table (2) = Agood_pattern -- Ch B uses this address
table (3) = Agood_pattern -- Ch C uses this address

Note: Care must be exercised when using channel id as an index to an array. The current
definition of the channel_id type gives a value of O for A, 1 for B, and 2 for C. When Ada
computes addresses within an array, it treats an index of 0 as a special case. Thus if the
channels used their id as an index, channel A would drop out of sync. The solution is to
convert the id from 0, 1, and 2 to 1, 2 and 3, and then have a Oth entry in the table which is
unused.

Verifying the Expected Results

To verify that each channel has obtained the correct result after the FROM_ALL exchange,
each channel distributes its result to the other two. The result from each channel is then
compared to the expected result; any unequal result indicates an error. After the exchange,
-the error latches are also analyzed to verify their correct setting. Each channel exchanges
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its copy of the FROM_ALL error latch; these values are then compared to the expected latch
value. Any unequal result indicates an error.

A channel may appear to fail this test when actually it has dropped out of sync but has not
yet been detected as missing by Fast FDIR. Thus when a particular channel fails a voter
test, it is not immediately identified as having a voter error. Instead, the routine does its
own presence test using the dedicated data exchange to determine if the channel is still
synchronized. If it is, a reconfiguration record and error log entry are created for fast
FDIR; if the channel is not synchronized, the error is ignored. In either case, the voter test
is then discontinued and the next selftest starts executing.

Additional Consideration
1) The test is not done if the FROM_ALL error latch is set already.
2) Interrupts must be disabled during the critical period which includes doing the

FROM_ALL exchange, reading the result, and reading the FROM_ALL error
latch.
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4.2.1.3.4 Process Name: LATCH_TEST

Inputs:
e Current configuration

Outputs:

e None
Description:

This selftest tests the error latches in the data exchange hardware for all types of exchanges.
It verifies that when non source-congruent data is received by the voters, the error latches
correctly indicate the channel at fault for the particular type of exchange.

The test is done by calling subroutines which cause two channels to do one type of
exchange while the third channel does a different type. The subroutines verify that single
and multiple errors are correctly latched. (Refer to following sections on
GENERATE_DX_ERROR and GENERATE_MULTIPLE_ERROR.)

The latch test is not started unless all three channels are in sync. If either subroutine reports
that an error was detected, the latch test is discontinued and the next selftest starts running.
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4.2.1.3.5 Process Name: GENERATE DX ERROR

Inputs:

o Data exchange error latches

Outputs:
* Reconfig_cmd record

Description:

This routine verifies that single data exchange errors are correctly latched. This is done by
causing two channels to do one type of exchange while the third channel does a different
type. The results of the exchange do not need to verified, since this type of fault would be
caught by the voter selftest. However, the error latches are checked to ensure that they
correctly identify the dissenting channel on the particular type of exchange. If the error
latches do not contain the expected value, the test is considered to have failed. By reading
the error latches without clearing them, the routine guarantees that a particular fault will not
be attributed to the wrong latch because of an address decoding problem.

The table on the following page shows the tests that are run and the expected results of each
test.

In order for different channels to perform different exchanges without going out of sync,
the test is table-driven, with each channel using its own id as an index into the table. (Refer
to previous section on the voter test for cautions when using channel id as an index.) The
table identifies the following for each test.

e Address of the DX transmitter to be used by each channel in doing the
exchange. Each channel accesses this address by using its own id as an index.

e The pattern to be exchanged. Each channel accesses this pattern by using its
own id as an index.

» Expected setting of each channel's error latches for this test

» Expected setting of each channel's error latches for the multiple-error test (refer
to following section)

After the exchange is done, the error latches from each channel are read and distributed. If

the latches do not equal the value expected for each channel, the test is considered to have
failed.
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Dissenting Concurring Error Latches
Test Channel Channel
ChA ChB ChC
e - - - .- _____________________________________________________|
A B,C
¢} From_V From_B - From_B = From_B =
A Faulty A Faulty
2 From_V From_C -- From_C = From_C =
A Faulty A Faulty
3 From_A From_V From_A =
A Faulty -- --
B AC
4) From_V From_A From_A = - From_A =
B Faulty B Faulty
&) From_V From_C From_C = -- From_C=
B Faulty B Faulty
@ From_B From_V - From_B = -
B faulty
C AB
@) From_V From_A From_A = From_A = .
C Faulty C Faulty
) From_V From_B From_B = From_B = -
C Faulty C Faulty
(CY) From_C From_V - -- From_C
C Faulty

Figure 32. Data Exchange Error Latch Tests and Expected Results

A channel may appear to fail this test when actually it has dropped out of sync but has not
yet been detected as missing by Fast FDIR. Thus when a particular channel fails a latch
test, it is not immediately identified as having a latch error. Instead, the routine does its
own presence test using the dedicated data exchange to determine if the channel is still
synchronized. If it is, a reconfiguration record and error log entry are created for Fast
FDIR; if the channel is not synchronized, the error is ignored. In either case, the latch test
is then discontinued and the next selftest starts executing.

ional Consideration
1) The test is not done if any of the error latches are already set.

2) Interrupts must be disabled during the critical period which includes doing the
exchange and reading the appropriate error latch.
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4.2.1.3.6 Process Name: GENERATE_MULTIPLE_ERROR

Inputs:

» Data exchange error latches

Outputs:
* Reconfig_cmd record

Description:

This routine verifies that multiple data exchange errors are correctly latched. This is done
by repeatedly causing two channels to do one type of exchange while the third channel does
a different type. This test is very similar to the single-error test described in the preceding
section, and the reader should read this section before proceeding here. This test differs
from the single-error test only in that all errors for a particular channel are generated before
the error latches are read. The errors are actually generated twice before the latches are
read, so that the test verifies that both the same error and different errors can be correctly
OR'ed into the latches.

4.2.1.3.7 Process Name: ROM_SUM

Inputs:
e Starting and ending addresses of the memory to be summed

Outputs:
e Reconfig_cmd record

Description:

This test verifies that all three channels have identical values in ROM. Due to the static
nature of ROM, it is not necessary to check every individual location. Rather, each channel
computes a checksum of all PROM locations and then sends its own sum to the other two
channels. A consensus value is obtained by doing a software vote of the individual values;
each individual channel's sum is then compared to the voted sum to identify any errors.
Although there is a small probability that two errors will cancel each other and the sum
check will not detect them, that probability is small enough to be neglected.

A channel may appear to fail this test when actually it has dropped out of sync but has not
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the ROM
sum test, it is not immediately identified as having a ROM error. Instead this routine does
its own presence test using the dedicated data exchange to determine if the channel is still
synchronized. If it is, the ROM sum error is considered to be a legitimate error and a
reconfiguration record and error log entry are created for Fast FDIR; otherwise the error is
ignored.
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4.2.1.3.8 Process Name: GET_SUM

Inputs:
e Starting and ending addresses of the memory to be summed

Outputs:
e PROM checksum

Description:
This routine adds the contents of each 16-bit word in PROM and returns a 16-bit word

containing the result.

4.2.1.3.9 Process Name: RAM_SCRUB

Inputs:

o Starting and ending address of area to be tested
Outputs:

e None
Description:

This procedure does a RAM scrub on the specified memory area. This ensures that the
values in each location are congruent among the three channels. The subroutine
SCRUB_WORD is called for each word in the area to be scrubbed (see following section).
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4.2.1.3.10  Process Name: SCRUB_WORD

Inputs:
e Address of 16-bit word to be scrubbed

Outputs:
* Reconfig_cmd record

Description:

This procedure checks the specified memory location to ensure that the values are
congruent, or identical, among the three channels. After the location has been read, each
channel currently in the configuration sends its value to the other two channels. The value
from each channel is then compared to a voted value.

A channel may appear to fail this test when actually it has dropped out of sync but has not
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test, it
is not immediately identified as having a RAM error. Instead, this routine does its own
presence test using the dedicated data exchange to determine if the channel is still
synchronized. If it is not, the error is ignored. If the channel is still synchronized, an error
log entry identifying the location and value of the difference is created for fast FDIR and the
test is repeated. If the word is still different, a voted value is written into the location and
then read back. If the correct value is not read back, the failure is considered a hard failure
and a reconfiguration record notifying Fast of the error is created.

There are some RAM locations whose contents may legitimately differ from channel to
channel, e.g., the channel id and non-congruent data from external sources. Those
variables which are known in advance as potentially different are kept in a non-congruent
data area which is not scrubbed. But since not all the different RAM locations can be
predicted (because, for example, of interrupts causing registers to be stored on the stack),
at the present time only static variables are scrubbed.
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4.2.1.3.11  ProcessName: SHMEM_SCRUB

Inputs:

o Starting and ending address of area to be tested
Outputs:

e None
Description:

This procedure scrubs the dual-ported memory shared by the IOP and CP to ensure that the
values in each location are congruent among the three channels. The subroutine
SCRUB_SM_WORD is called for each word in the area to be scrubbed (see following
section). This procedure is only executed by the CP.

4.2.1.3.12  ProcessName: SCRUB_SM_WORD

Inputs:
¢ Address of 16-bit word to be scrubbed

Outputs:
¢ Reconfig_cmd record

Description:

This procedure checks each memory location to ensure that the values are congruent, or
identical, among the three channels. After a particular location has been read, each channel
currently in the configuration sends its value to the other two channels. The value from
each channel is then compared to a voted value.

A channel may appear to fail this test when actually it has dropped out of sync but has not
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test, it
is not immediately identified as having a RAM error. Instead, this routine does its own
presence test using the dedicated data exchange to determine if the channel is still
synchronized. If it is not, the error is ignored. If the channel is still synchronized, a
reconfiguration record and error log entry identifying the location and value of the
difference are created for later use by Fast FDIR. No attempt is made, as in the RAM
scrub, to write a voted value and repeat the test because the IOP (this test is only done by
the CP) could have written something into that location that the CP would be destroying.
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4.2.1.3.13  ProcessName: RAM_PATTERN

Inputs:

o Starting and ending addresses of area to be tested
Outputs:

e None
Description:

This procedure tests the functionality of each word in the specified RAM area by writing a
particular pattern to each word and reading it back. These patterns test the ability of each
bit in the word to hold both 0 and 1 values. The subroutine TEST-WORD-WITH-
PATTERN is called for each word in the area to be tested (refer to following section).

4.2.1.3.14  Process Name: TEST WORD_WITH_PATTERN

Inputs:

e Address of 16-bit word to be tested
Outputs:

* Reconfig_cmd record
Description:

This procedure tests the functionality of each word in RAM by writing a particular pattern
to each word and reading it back. After a word has been written and read, each channel
currently in the configuration sends its result from the test to the other two channels. The
channels then verify that the test was passed on each individual channel.

Six different patterns, which represent the standard sequence of marching ones surrounded
by zeros and marching zeros surrounded by ones, are written to each word. These patterns
test each bit's ability to hold both a 0 and a 1 no matter what the setting of its neighbor bits.

A channel may appear to fail this test when actually it has dropped out of sync but has not
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test, it
is not immediately identified as having a RAM error. Instead, this routine does its own
presence test using the dedicated data exchange to determine if the channel is still
synchronized. If it is not, the error is ignored. Otherwise, it is assumed to be a legitimate
RAM error and an error log entry is created for Fast FDIR. The test is then repeated; if the
error occurs again, the routine assumes the error represents a hard failure and a
reconfiguration record is created for Fast FDIR.

The actual reading and writing of the test pattern is done by calling an assembly language
subroutine which saves the contents of the location in a register before testing it (refer to
following section on TEST_LOCATION).
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4.2.1.3.15  ProcessName: TEST LOCATION

Inputs:
e Address of word to be tested
¢ Pattern to be written

Outputs:

* Value read after test pattern was written
Description:

This is an assembly language function which writes a specified pattern to a specified word
in RAM, then reads it back and returns the value read to the caller.

The current value of the word to be tested is saved in a register before the test is started and
restored when the test is finished. In the laboratory testing environment, where program
code probably resides in RAM, the routine must take care not to write over its own
instructions. The beginning and end of the critical section of code are identified with
labels, and any locations within this area are not tested.

4.2.1.3.16  Process Name: SYSTEM_TIMER TEST

Inputs:
* Local and voted values of the system timer

Outputs:
* Reconfig_cmd record

Description;

This test verifies that the system timers in all three channels have the same value. The
channels first obtain a consensus value for the timer by doing a FROM_ALL exchange.
Each channel currently in the configuration then sends its own timer value to the other
channels and these individual values are compared to the voted value to identify any errors.

A channel may appear to fail this test when actually it has dropped out of sync but has not
yet been detected as missing by Fast FDIR. Thus when a particular channel fails the test it
is not immediately identified as having a timer error. Instead, the routine does its own
presence test using the dedicated data exchange to determine if the channel is still
synchronized. If it is, a reconfiguration record and error log entry are created for Fast
FDIR,; if the channel is not synchronized, the error is ignored.
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4.2.1.3.17  ProcessName: GET_LATEST CONFIG

Inputs:
e Current configuration at runtime
e  Startup configuration

Outputs:
* Array identifying up channels

Description:

This routine converts the current configuration from a record of three booleans to an array
of three booleans. The selftest routines can work more easily with the configuration
represented as an array rather than a record. The input configuration record will either be
the global configuration record maintained in the CONFIG package during normal system
execution, or it will be the startup configuration record, which is a record local to the TEST
package and which is used when the selftests are running uninterrupted at system startup.

4.2.1.3.18  Process Name: CREATE_RECONFIG

Inputs:
e Startup_selftest flag
e Faulty channel id and fault id

Outputs:
e Reconfig_cmd record

Description:
This routine creates the reconfiguration record that is passed to Fast FDIR when a fault is

detected. This record is not created, however, if a fault is detected while the selftests are
running at system startup.
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4.2.1.3.19  ProcessName: DELAY_UNTIL_FAST

Inputs:

e Startup_selftest flag
Outputs:

e None
Description:

This subroutine is called after a fault has been detected and a reconfiguration record created
for Fast FDIR. Its function is to suspend the selftest task until Fast FDIR has been able to
reconfigure around the faulty channel. It does not want to do this, however, if the selftests
are running at system startup, since at that time they are running with interrupts disabled
and Fast will never execute.

4.2.1.3.20  Process Name: CHANNEL_PRESENT

Inputs:
e Channelid

Outputs:
» Boolean indicating if specified channel is synchronized

Description:

This routine determined if the specified channel is synchronized with at least one other
channel by doing a presence test using the dedicated data exchange registers. While a
presence test using the shared data exchange would be simpler (refer to Section 4.2.1.1.4),
it requires locking the shared bus, which is not an acceptable action for this task. Since any
word that is transmitted using the dedicated exchange registers will remain in the exchange
receiver for more than one FTC cycle, it is possible that a channel only slightly behind
would see the expected word and incorrectly conclude that it was in sync. A valid presence
test using the dedicated exchange must therefore do two rounds of exchanges: (1) each
channel transmits a unique pattern and determines what other channels it sees, and (2) each
channel transmits a unique pattern indicating who it saw. A software-voted value of who
was seen is then obtained and compared to who the particular channel saw. If a majority
vote could not be obtained or who the particular channel saw does not agree with the voted
value, the particular channel itself is unsynchronized and returns FALSE. If the particular
channel is synchronized, it compares who each individual channel saw with the voted value
to determine if the specified channel is synchronized or not.

97



4.2.1.4 68010 Exception Handler

HARDWARE
EXCEPTION

( Exccp_Handler)

Figure 33. Exception Handler Processes

4.2.1.4.1 Process Name: EXCEP_HANDLER

Inputs:
e Program counter, status register and vector offset from the stack

Outputs
» Entry in the non-congruent log
Description:

This routine receives control when a hardware exception such as an illegal instruction or
addressing error occurs.

The type of exception and relevant information such as the program counter, status register,
and selected registers are logged in the non-congruent log. A presence test is done to
determine if the exception occurred synchronously on all channels or if only one channel
was affected, and the result is logged. The processor then does a software restart.
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4.2.2 Channel Recovery Process Descriptions

Channel
Recovery

Transient Lost Soul System
FDIR Sync Restart

Figure 34. Channel Recovery Functions

4.2.2.1 Transient FDIR

(CP_FDIR__AND_TIN[E] G)P_FDIR_AND_TINIE]
( CP Transient j ( IOP Transient )

Attempt Decide_To_
Channel_Recovery Attempt_Recovery

Figure 35. Transient FDIR Processes

99



4.2.2.1.1 Process Name: CP_TRANSIENT

Inputs:
e FAST_INFO array set by Fast FDIR
e CHANNEL_STATUS array
e CHANNEL_ON_TRIAL array
 LOST_SOUL_STATUS boolean
e JOSS_RESTORE_CMD boolean

e CHANNEL_STATUS array
¢ Channel_enable_cmd for CP Fast

» Sched_lost_soul command in shared memory
e IOSS_restore_cmd boolean

Description:

This is the main procedure of the TRANSIENT_FDIR process on the CP and is called by
the CP_FDIR_AND_TIME task. It does all the decision making for both the CP and the
IOP and notifies the IOP when either a resynchronization is to take place or the IOS must
be reinitialized. It notifies CP Fast FDIR when a channel is to be permanently enabled.

To support this decision making, this procedure maintains four variables about each
channel:

« FAIL_LEVEL: the amount of time the channel must operate correctly after it
has recovered from a fault (i.e., the length of its probation). This variable is
incremented when a fault has been detected and decremented as the probation
period passes.

« RETRY_BACKOFF: the amount of time between recovery attempts. This
variable is set when a recovery is attempted and is doubled with each
succeeding attempt until MTTR is reached.

e RETRY_TIME: the amount of time remaining until another recovery attempt
can be made (assuming the previous one failed). This variable is set with the
RETRY_BACKOFF value when a recovery is attempted; if the recovery fails, it
is decremented as time passes.

e CHANNEL_ON_TRIAL: whether or not a channel is on probation. This
variable is set when a channel is initially recovered, reset when the probation
period is over and the IOP is signalled to start its IOSS restore task, and finally
cleared when the IOP signals that the IOSS restore task is complete.
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This procedure has work to do only when a channel is down. It makes the following
sequence of tests; as soon as any condition is met, the current iteration of Transient is
terminated.

e Checks for a new error, i.e., one detected by Fast since the last iteration of
Transient. If there has been a new error, the FAIL_LEVEL for the channel is
updated and an attempt is made to recover the channel.

e Checks if a channel is on probation. If so, it counts down the probation time by
decrementing FAIL_LEVEL. When the probation time has expired, the IOP is
notified to start the IOSS_RESTORE task and the CHANNEL_ON_TRIAL
variable is set to WAITING_FOR_IOP.

e Checks if the LOST_SOUL_SYNC task was previously scheduled, but has not
run yet. If so, there is nothing to do.

e Checks if the LOST_SOUL_SYNC task was previously scheduled and has
picked up the failed channel. If so, it begins the channel's probation period by
setting the CHANNEL_ON_TRIAL variable to yes.

* Checks if there was a previously detected failure (i.e., CHANNEL_ON_TRIAL
= NO) whose RETRY_TIME must be decremented. If so, RETRY_TIME is
decremented; when it goes to zero, another attempt is made to recover the
channel.

»  Checks if the channel has passed its probation period and is waiting for the IOP
to finish the IOSS_RESTORE task. If the IOSS_RESTORE task is finished,
Fast FDIR is notified that the channel an be permanently enabled.

The above checks must be made in the given order because of their priority. The check for
a new error must be made first because this condition cancels all previously existing states,
for example, a channel being on trial. Checking on the status of the LOST_SOUL_SYNC
task must be done before checking for CHANNEL_ON_TRIAL = NO so that
LOST_SOUL_SYNC does not get scheduled multiple times.
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4.2.2.1.2 Process Name: ATTEMPT_CHANNEL_RECOVERY

Inputs:
*  FAST_INFO array
+  Error latches from Fast FDIR

Outputs:
e  Sched_lost_soul record in shared memory
e LOST_SOUL_STATUS boolean
»  Scheduling of Lost_Soul_Sync task

Description:

This procedure is executed when a channel's RETRY_TIME ( the time between successive
recovery attempts) has expired.

First the variables governing the recovery attempt (RETRY_BACKOFF and
RETRY_TIME) are set for the next attempt. Then the procedure checks for the type of
failure (synchronization or data exchange errors).

To recover an unsynchronized channel, the LOST_SOUL_SYNC task must be scheduled
and a scheduling command written in shared memory for the IOP. The results of the
LOST_SOUL_SYNC task will not be known until a subsequent iteration of the
TRANSIENT task.

To recover from data exchange errors, the data exchange error latches are checked for the

absence of errors. If no errors are detected, a command to temporarily enable the channel
is sent to Fast FDIR and its probation period begins.
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4.2.2.1.3 Process Name: DECIDE_ TO_ATTEMPT_RECOVERY

Inputs:
» INITIAL_RECOVERY_ATTEMPT boolean
+ RETRY_TIME
» CHANNEL_RECOVERY_MODE
« CHANNEL_REPAIRED

* RETRY_TIME
« CHANNEL_REPAIRED

Description:

When a fault is first detected, it is regarded as a transient and recovery is attempted
immediately. If the attempt fails, the time between successive attempts increases until
MTTR is reached. If the channel has not been recovered by this time, the fault is regarded
as a hard failure. Action at this point depends on the user-specified recovery mode: either
recovery is attempted every MTTR or recovery is attempted only when an operator
indicates the channel is repaired. (The default in the laboratory testing environment is to
attempt every MTTR).
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4.2.2.14 Process Name: IOP_TRANSIENT

Inputs:
e Sched_IOSS_restore command from CP
¢  Sched_lost_soul command from CP

Outputs:
e JOSS_RESTORE_SCHEDULED boolean

Description:

This is the main procedure of the TRANSIENT_FDIR process on the IOP and is called by
the IOP_FDIR_AND_TIME task. It has work to do only when a channel is down. It
checks for commands from the CP, which makes all the decisions of the
TRANSIENT_FDIR process It can receive two commands from the CP:

e to schedule the LOST_SOUL_SYNC task, which tries to pick up an
unsynchronized channel, or

* to schedule the IOSS_RESTORE task, which re-initializes the I0OS dual-ported
memory and registers.

The command to schedule the LOST_SOUL_SYNC task specifies the absolute time at
which the task should run. This is necessary so that neither the CP nor the IOP spend
unnecessary time waiting in the LOST_SOUL_SYNC task to do their handshake.

The command to schedule the IOSS_RESTORE_TASK is cleared by the task itself to
indicate that it is completed. This procedure uses the IOSS_RESTORE_SCHEDULED
boolean in FDIR_GLOBALS to prevent itself from scheduling the task multiple times.
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4.2.2.1.5 Process Name: FDIR_GLOBALS

Inputs:

e None
Outputs:

e None
Description:

This package contains types and variables shared by different tasks involved in the FDIR
process.
o Fast FDIR must pass several different pieces of information to Transient FDIR.
This information is written by Fast, then read and cleared by Transient.

- The error latches read by the error latch analysis routine
- An array of flags, one for each channel, to indicate whether a channel's
failure caused it to drop out of sync or not.

e The Display task can accept a command from an operator that a failed channel
has been repaired. It passes this information to Transient FDIR in an array of
booleans, one for each channel.

e CP Transient and IOP Transient communicate through commands in shared
memory. The type for the Lost_Soul_Sync scheduling command is defined
here.

e IOSS Restore must indicate to IOP Transient when the IOSS Restore task is
done. It does this by clearing a flag which IOP Transient has previously set.
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4.2.2.2 Lost Soul Sync
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Figure 36. Lost Soul Sync Processes
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4.2.2.2.1 Process Name: LOST_SOUL_SYNC

Inputs:

e None
Outputs:

e None
Description:

The LOST_SOUL_SYNC task is scheduled when Transient FDIR has determined that an
attempt should be made to pick up a channel that has become desynchronized. The task is
scheduled to run at an absolute time and is descheduled after one iteration. It calls the
CHANNEL_SYNC routine which tries to pick up the lost channel.

4.2.2.2.2 Process Name: CHANNEL_SYNC

Inputs:
» Integer version of current configuration
»  Reason for synching - initial or pickup
e  Type of sync variable in global memory

Outputs:
«  Entry in reconfig log
»  Type of sync variable in global memory

Description:
This is the main procedure of the LOST_SOUL_SYNC task. Itis also the procedure used

to synchronize channels at system startup. It is where channels who are together and
channel(s) who are alone find each other. Its main steps are:

e to synchronize the channels to the instruction level, and

 to align the channels' volatile memory and registers, i.c., make them identical
amongst the synchronized channels.
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To be in sync, a processor must be synchronized to the instruction level with other
processors of its type (i.e., CPs or IOPs). In addition, its companion must be
synchronized with other processors of the companion's type, i.¢., either both processors in
a channel are good or they are both failed. The steps in the synchronization process and the
interaction between CP and IOP are summarized below and shown in the following
diagram.

*  Initial Handshake

e CPs Sync

»  CPs Concur on Type of Sync

e CPs Signal IOPs

o IOPs Concur on Type of Sync

e IOPs Determine Consensus of CP and IOP Types of Sync
o IOPs Signal CPs

» CPs Align
+  CPs Signal IOPs
« IOPs Align

« IOPs Signal CPs
»  CPs Reconfigure and Log

Initial Handshake

The purpose of the initial handshake is to coordinate the synchronization of the CPs with
that of the IOPs, since a processor cannot be considered synchronized unless its companion
is also synchronized. This handshake ensures that both sides are in the Channel Sync
routine before the attempt to sync is made. It also means that only one side (the CPs were
chosen arbitrarily) needs to sync using the data exchange hardware. As explained in more
detail in the process descriptions for CP_HANDSHAKE and IOP_HANDSHAKE, the
other side (the IOPs) will automatically sync while waiting for their companions.

P nc

The CP locks the shared bus and makes a fixed number of attempts to synchronize with
another channel(s) by doing data exchanges. As long as a CP is alone, it repeats this step.

CPs Concur on Type of Sync

This step and the next four steps concern the CP and IOP agreeing on what type of sync
they are doing. This agreement is required in order for the system to recover from some
catastrophic condition, such as a second failure or hardware or software common-mode
fault, by automatically restarting. These catastrophic conditions could result in channels
-going to the Channel Sync routine in different states, which would make it impossible for
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them to be aligned. Therefore we must check why a channel is in Channel Sync and ensure
that at least two channels arrive there in the same state.

There are four possible types of sync:

e POWER_ON - an operator has restarted the system

e SOFT_RESTART - the software has restarted the system

e RECOVERY_CHANS_TOGETHER - two synchronized channels are trying
to pick up a lone channel

e RECOVERY_LONE_CHAN - alone channel is trying to be picked up

A consensus value for the type of sync is arrived at by the standard method of bit-for-bit
voting. If there is no majority, there will be no consensus, with one exception: a vote of
POWER_ON and SOFT_RESTART results in a consensus value of SOFT_RESTART.
This is because POWER_ON and SOFT_RESTART produce identical states in the
processor; their only difference is that SOFT_RESTART preserves the existing non-
congruent logs. The action taken when there is no consensus depends on the particular
situation; this is discussed in more detail below.

The first step in arriving at a consensus value for type of sync is for the CPs to agree
among themselves. After two or more CPs have synchronized, they all exchange their type
of sync and obtain a voted value. If there is no consensus or if the majority are lone
processors trying to be picked up, they have different states and cannot be aligned. They
must restart in order to achieve identical states.

CPs Signal IOPs

After the CPs examine their type of sync, they notify the IOPs by setting the TOIOP
variable in shared memory. They can set it to two possible values:

. 6 - The CPs could not achieve a consensus and/or had to restart.
. 7 - The CPs did achieve a consensus. The consensus value is written in
the TYPE_OF_SYNC variable in shared memory.

The CPs now wait for a return signal from the IOPs.

IOPs Concur on Type of Sync

The IOPs reach a consensus on their type of sync in the same way as the CPs. They all
exchange their type of sync and obtain a voted value. If there is no consensus or if the
majority are lone channels trying to be picked up, they must restart so that they can achieve
identical states.
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If the IOPs did not have to restart, they now compare their voted type of sync to the CPs'
type from shared memory. There are two possible results.

e A consensus is reached. This will happen either because the two types are the
same or because one is a Power_On and one is a Soft_Restart.

e No consensus is reached. This will be the case when one side has started over
(either a power_on start or a software restart), but the other side has not. In this
situation, the side which did not restart must now do so. One side cannot
continue from where it previously left off when the other side is starting afresh.

IOPs Signal CP

After the IOPs examine their types of sync and the CPs' type of sync, they notify the CPs
by setting the TOIOP variable in shared memory. They can set three possible values:

¢ 8 - The CPs must do a restart. The IOPs will wait for them at the Initial
Handshake.

e 9 - The IOPs must do a restart. The CPs should wait for them at the Initial
Handshake.

s 10 - A consensus value has been reached. It is written back into the
TYPE_OF_SYNC variable in shared memory. Both sides now use the
consensus value as their type of sync.

The IOPs now start Interval Timer 1, which is used to reset the watchdog timer during the

resynchronization process and wait for a signal from the CPs as to whether they need to
align.

CPs Align

Having agreed on a type of sync, the CPs now check to see if they have picked up any
new channel(s). If they have, they start Interval Timer 1, they then align their volatile
memory and registers. These include:

¢ interval timers

s RAM (oncard and offcard)

s testport memory

« oncard discretes

~ shared discretes

+ LMN data exchange control register
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Finally the data exchange error latches and fault-tolerant clock error latches are cleared.

CPs Signal 10Ps

The CPs notify the IOPs of the results of the above step by setting the TOIOP variable in
shared memory. They can set it to two possible values:

e 2 - The CPs have picked up a channel and aligned. The IOPs must align
also.
e 3 - The CPsdid not pick up anyone new. The IOPs do not need to align.

I0Ps Align

If the CPs picked up a new channel, the IOPs must now align their volatile memory and
registers. These are the same as on the CP side, with two additions:

* shared memory
e system timer

Finally, the data exchange error latches and fault-tolerant clock error latches are cleared.

IOPs Notify CPs

Whether or not the IOPs needed to align, they clear the TOIOP variable to signal the CP
that they are done.

CPs Log and Reconfigure

Finally the CPs reconfigure and log the reconfiguration. This step is done here because the
system timer is initialized/aligned by the IOPs; a meaningful time is not available until this
point.
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4.2.2.2.3  ProcessName: CP_HANDSHAKE
JOP_HANDSHAKE

Inputs
e TOIOP variable in shared memory

Outputs:
e TOIOP variable in shared memory

Description:

These two routines execute the handshake between the CP and IOP which is required
before an attempt to synchronize multiple channels is made.

The basic sequence of the handshake is for the CP to write some value in the TOIOP
variable in shared memory and for the IOP to clear it. After the IOP has cleared it, the CP
attempts to sync using the data exchange hardware, first locking the shared bus. When
they have successfully synchronized, the CPs write another value in the TOIOP variable
and unlock the shared bus. Meanwhile, the IOP, having cleared TOIOP, is waiting for the
variable to change to some other value. The IOPs will automatically synchronize here
because, since the shared bus is locked, they will all be suspended at the instruction
referencing shared memory.

One complication involves the initial setting of the TOIOP variable. If the IOP looks for a
particular value, but that value is left over from a previous execution, the IOP will
incorrectly conclude that its companion is waiting at the handshake. This problem was
solved by having the handshake be a two-step process. In between the first and second
steps, the IOP can determine if the value it read was a leftover value or if its CP is really
waiting for it.

The actual steps of the initial handshake are shown in the following diagram.
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4.2.2.24 Process Name: SYNC_CHANS

Inputs:

e None

Outputs:

'« Integer representing the channels in sync
Description:

This is an assembly language routine which synchronizes channels at the instruction level
by sending a unique pattern from each channel through the data exchange. If the result read
after a particular exchange is the expected pattern, the channel originating the exchange is
judged to be present and in sync.

The patterns exchanged must be long words and must be transmitted using the shared
exchange registers. When a word is exchanged using the dedicated registers, the data
exchange hardware is sufficiently slow such that any particular word will be in the receiver
for more than one FTC cycle. This would allow a channel only slightly behind to see the
expected word in the receiver and incorrectly conclude that it is in sync. Successive
exchanges of long words using the shared registers, however, result in the long word
being in the receiver for only one FTC cycle, so a tardy channel could not conclude that it
was in sync.

The routine does three data exchanges: FROM_A, FROM_B, and FROM_C. After each
exchange it analyzes the result to see if the source channel is present. When all three
channels are present, it returns immediately to the calling routine; otherwise it iterates the
exchanges a number of times, attempting to pick up all channels. This basic data exchange
loop is shown in the following N-S diagram.

The execution time of this data exchange loop is of critical importance. If the three
channels are all executing this code but have started at different times, they will never
synchronize if the basic exchange loop takes the same number of FTC cycles on each
channel. The loop must take a different (prime) number of FTC cycles on each channel.
This is done by having each unsynchronized channel delay for a different amount of time at
the end of each iteration, while synchronized channels have no delay. In the laboratory
demonstration implementation, which uses a Motorola 68010 processor with an 8 MHz
clock, synchronized channels take 15.5 FTC cycles for one iteration, channel A alone
takes 17.5 cycles, channel B alone takes 18.5 cycles, and channel C alone takes 20.5
cycles.
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Initialization

Data exchange loop
Do N times or until 3 channels present

Do From_A exchange and look at result

Do From_B exchange and look at result

Do From_C exchange and look at result

Update number of iterations- exit loop
if required number done

Delay appropriate amount for particular
channel or combination of channels

Return word identifying channels in Sync

Figure 39A. Sync Chans N-S Diagram
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4.2.2.2.5 Process Name: START_TIMER1

Inputs:
¢  Current tine
e  Time watchdog timer was last reset

Outputs:
e  Countdown value in Timer 1
e  Handler address for Timer 1 interrupt

Description:

Since the Channel_Sync routine runs uninterrupted by other system tasks, when a
recovered channel is being aligned the amount of time used will exceed the limit of the
watchdog timer. During Channel_Sync, therefore, one of the unused interval timers
(specifically, Timer 1) is used to periodically cause an interrupt, at which time the
watchdog is reset.

This subroutine sets Interval Timer 1 the first time by calling a system subroutine with an
initial value and the address of the interrupt handler. The initial value must be calculated
based on the time the watchdog was last reset, since the watchdog cannot be cleared either
too soon or too late.

Thi